1
|
Oliveira NFB, Ladokhin AS, Machuqueiro M. Constant-pH MD simulations of the protonation-triggered conformational switching in diphtheria toxin translocation domain. Biophys J 2024; 123:4266-4273. [PMID: 39215463 DOI: 10.1016/j.bpj.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Protonation of key residues in the diphtheria toxin translocation (T)-domain triggered by endosomal acidification is critical for inducing a series of conformational transitions critical for the cellular entry of the toxin. Previous experiments revealed the importance of histidine residues in modulating pH-dependent transitions. They suggested the presence of a "safety latch" preventing premature refolding of the T-domain by a yet poorly understood mechanism. Here, we used constant-pH molecular dynamics simulations to systematically investigate the protonation sequence in the wild-type T-domain and the following mutants: H223Q, H257Q, E259Q, and H223Q/H257Q. Comparison of these computational results with previous experimental data on T-domain stability and activity with the H-to-Q replacements confirms the role of H223 (pKa = 6.5) in delaying the protonation of the main trigger, H257 (pKa = 2.2 in the WT and pKa = 4.9 in H223Q). Our calculations also reveal a very low pKa for a neighboring acidic residue E259, which does not get protonated even during simulations at pH 3. This residue also contributes to the formation of the safety latch, with the pKa of H257 increasing from 2.2 to 5.1 upon E259Q replacement. In contrast, the latter replacement has virtually no effect on the protonation of the H223. Thus, we conclude that the interplay of the protonation in the H223/H257/E259 triad has evolved to prevent triggering the accidental refolding of the T-domain by a fluctuation in the protonation of the main trigger at neutral pH, before the incorporation of the toxin inside the endosome. Subsequent acidification of the endosome overcomes the safety latch and triggers conformational switching via repulsion of H223+ and H257+. This protonation/conformation relationship corroborates experimental findings and offers a detailed stepwise molecular description of the transition mechanism, which can be instrumental in optimizing the potential applications of the T-domain for targeted delivery of therapies to tumors and other diseased acidic tissues.
Collapse
Affiliation(s)
- Nuno F B Oliveira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Miguel Machuqueiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Badiee S, Govind Kumar V, Moradi M. Molecular Dynamics Investigation of the Influenza Hemagglutinin Conformational Changes in Acidic pH. J Phys Chem B 2024; 128:11151-11163. [PMID: 39497238 PMCID: PMC11571222 DOI: 10.1021/acs.jpcb.4c04607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/13/2024]
Abstract
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics. Specifically, we investigated the impact of protonation on conserved histidine residues (H1062) located in the hinge region of HA2. Our analysis encompassed comparisons between nonprotonated (NP), partially protonated (1P, 2P), and fully protonated (3P) conditions. Our findings reveal substantial pH-dependent conformational alterations in the HA protein, affecting its receptor-binding capability and immune evasion potential. Notably, the nonprotonated form exhibits greater stability compared to protonated states. Conformational shifts in the central helices of HA2 involve outward movement, counterclockwise rotation of protonated helices, and fusion peptide release in protonated systems. Disruption of hydrogen bonds between the fusion peptide and central helices of HA2 drives this release. Moreover, HA1 separation is more likely in the fully protonated system (3P) compared to nonprotonated systems (NP), underscoring the influence of protonation. These insights shed light on influenza virus infection mechanisms and may inform the development of novel antiviral drugs targeting HA protein and pH-responsive drug delivery systems for influenza.
Collapse
Affiliation(s)
- Shadi
A. Badiee
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Vivek Govind Kumar
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Badiee SA, Kumar VG, Moradi M. Molecular dynamics investigation of the influenza hemagglutinin conformational changes in acidic pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602399. [PMID: 39026831 PMCID: PMC11257422 DOI: 10.1101/2024.07.07.602399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The surface protein hemagglutinin (HA) of the influenza virus plays a pivotal role in facilitating viral infection by binding to sialic acid receptors on host cells. Its conformational state is pH-sensitive, impacting its receptor-binding ability and evasion of the host immune response. In this study, we conducted extensive equilibrium microsecond-level all-atom molecular dynamics (MD) simulations of the HA protein to explore the influence of low pH on its conformational dynamics. Specifically, we investigated the impact of protonation on conserved histidine residues (His106 2 ) located in the hinge region of HA2. Our analysis encompassed comparisons between non-protonated (NP), partially protonated (1P, 2P), and fully-protonated (3P) conditions. Our findings reveal substantial pH-dependent conformational alterations in the HA protein, affecting its receptor-binding capability and immune evasion potential. Notably, the non-protonated form exhibits greater stability compared to protonated states. Conformational shifts in the central helices of HA2 involve outward movement, counterclockwise rotation of protonated helices, and fusion peptide release in protonated systems. Disruption of hydrogen bonds between the fusion peptide and central helices of HA2 drives this release. Moreover, HA1 separation is more likely in the fully-protonated system (3P) compared to non-protonated systems (NP), underscoring the influence of protonation. These insights shed light on influenza virus infection mechanisms and may inform the development of novel antiviral drugs targeting HA protein and pH-responsive drug delivery systems for influenza.
Collapse
|
4
|
Gilboa T, Ogata AF, Reilly C, Walt DR. Single-molecule studies reveal method for tuning the heterogeneous activity of Alkaline Phosphatase. Biophys J 2022; 121:2027-2034. [DOI: 10.1016/j.bpj.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
|
5
|
Sequence modulation of tunneling barrier and charge transport across histidine doped oligo-alanine molecular junctions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhao LN, Mondal D, Li W, Mu Y, Kaldis P. Histidine protonation states are key in the LigI catalytic reaction mechanism. Proteins 2021; 90:123-130. [PMID: 34318530 DOI: 10.1002/prot.26191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dibyendu Mondal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Lin QT, Lee R, Feng AL, Kim MS, Stathopulos PB. The leucine zipper EF-hand containing transmembrane protein-1 EF-hand is a tripartite calcium, temperature, and pH sensor. Protein Sci 2021; 30:855-872. [PMID: 33576522 DOI: 10.1002/pro.4042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Leucine Zipper EF-hand containing transmembrane protein-1 (LETM1) is an inner mitochondrial membrane protein that mediates mitochondrial calcium (Ca2+ )/proton exchange. The matrix residing carboxyl (C)-terminal domain contains a sequence identifiable EF-hand motif (EF1) that is highly conserved among orthologues. Deletion of EF1 abrogates LETM1 mediated mitochondrial Ca2+ flux, highlighting the requirement of EF1 for LETM1 function. To understand the mechanistic role of this EF-hand in LETM1 function, we characterized the biophysical properties of EF1 in isolation. Our data show that EF1 exhibits α-helical secondary structure that is augmented in the presence of Ca2+ . Unexpectedly, EF1 features a weak (~mM), but specific, apparent Ca2+ -binding affinity, consistent with the canonical Ca2+ coordination geometry, suggested by our solution NMR. The low affinity is, at least in part, due to an Asp at position 12 of the binding loop, where mutation to Glu increases the affinity by ~4-fold. Further, the binding affinity is sensitive to pH changes within the physiological range experienced by mitochondria. Remarkably, EF1 unfolds at high and low temperatures. Despite these unique EF-hand properties, Ca2+ binding increases the exposure of hydrophobic regions, typical of EF-hands; however, this Ca2+ -induced conformational change shifts EF1 from a monomer to higher order oligomers. Finally, we showed that a second, putative EF-hand within LETM1 is unreactive to Ca2+ either in isolation or tandem with EF1. Collectively, our data reveal that EF1 is structurally and biophysically responsive to pH, Ca2+ and temperature, suggesting a role as a multipartite environmental sensor within LETM1.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rachel Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Allen L Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Li B, Tian L, He X, Ji X, Khalid H, Yue C, Liu Q, Yu X, Lei S, Hu W. Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Phys Chem Chem Phys 2019; 21:26058-26065. [PMID: 31746863 DOI: 10.1039/c9cp04695j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histidine works as an important mediator in the charge transport process through proteins via its conjugate side group. It can also stabilize a peptide's secondary structure through hydrogen bonding of the imidazole group. In this study, the conformation of the self-assembled monolayer (SAM) and the charge transport of the tailor-made oligopeptide hepta-histidine derivative (7-His) were modulated through the pH control of the assembly environment. Histidine is found to be an efficient tunneling mediator in monolayer junctions with an attenuation factor of β = ∼0.5 Å-1. Successful theoretical model fitting indicates a linear increase in the number of tunneling sites as the 7-His SAM thickness increases, following the deprotonation of histidine. Combined with the ultraviolet photoelectron spectroscopy (UPS) measurements, a modulable charge transport pathway through 7-His with imidazole groups of histidine as tunneling foot stones is revealed. Histidine therefore possesses a large potential for modulable functional (bio)electronic devices.
Collapse
Affiliation(s)
- Baili Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
10
|
Zhao X, Li R, Zhou Y, Xiao M, Ma C, Yang Z, Zeng S, Du Q, Yang C, Jiang H, Hu Y, Wang K, Mok CKP, Sun P, Dong J, Cui W, Wang J, Tu Y, Yang Z, Hu W. Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. J Med Chem 2018; 61:5187-5198. [PMID: 29799746 DOI: 10.1021/acs.jmedchem.8b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Influenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies. In this study, we explored a structure-activity relationship (SAR) of pinanamine-based antivirals and discovered a potent inhibitor M090 against amantadine-resistant viruses, including the 2009 H1N1 pandemic strains, and oseltamivir-resistant viruses. Mechanism of action studies, particularly hemolysis inhibition, indicated that M090 targets influenza HA and it occupied a highly conserved pocket of the HA2 domain and inhibited virus-mediated membrane fusion by "locking" the bending state of HA2 during the conformational rearrangement process. This work provides new binding sites within the HA protein and indicates that this pocket may be a promising target for broad-spectrum anti-influenza A drug design and development.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China.,Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Mengjie Xiao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhongjin Yang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Shaogao Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Kefeng Wang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China.,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine , The University of Hong Kong , 5 Sassoon Road , Pokfulam , Hong Kong
| | - Ping Sun
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Jianghong Dong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Wei Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| |
Collapse
|
11
|
Effects of charge and hydrophobicity on the oligomerization of peptides derived from IAPP. Bioorg Med Chem 2017; 26:1151-1156. [PMID: 29074350 DOI: 10.1016/j.bmc.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
Changes in pH resulting in modifications of charge can dramatically alter the folding and interaction of proteins. This article probes the effects of charge and hydrophobicity on the oligomerization of macrocyclic β-sheet peptides derived from residues 11-17 of IAPP (RLANFLV). Previous studies have shown that a macrocyclic β-sheet peptide containing this IAPP sequence (peptide 1Arg) does not form oligomers in aqueous solution at low millimolar concentrations. Replacing arginine with the uncharged isostere citrulline generates a homologue (peptide 1Cit) that forms a tetramer consisting of a sandwich of hydrogen-bonded dimers. The current study probes the role of charge and hydrophobicity by changing residue 11 to glutamic acid (peptide 1Glu) and leucine (peptide 1Leu). Diffusion-ordered spectroscopy (DOSY) studies show that peptides 1Glu and 1Leu form tetramers in solution. NOESY studies confirm that both peptides form the same sandwich-like tetramer as peptide 1Cit. 1H NMR spectroscopy at various concentrations reveals that peptide 1Leu has the highest propensity to form tetramers. The effects of pH and charge on oligomerization are further probed by incorporating histidine at position 11 (peptide 1His). DOSY studies show that peptide 1His forms a tetramer at high pH. At low pH, peptide 1His forms a new species that has not been previously observed by our research group-a dimer. These studies demonstrate the importance of charge and hydrophobicity in the oligomerization of IAPP-derived peptides.
Collapse
|
12
|
Rodnin MV, Li J, Gross ML, Ladokhin AS. The pH-Dependent Trigger in Diphtheria Toxin T Domain Comes with a Safety Latch. Biophys J 2017; 111:1946-1953. [PMID: 27806276 DOI: 10.1016/j.bpj.2016.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
Protein-side-chain protonation, coupled to conformational rearrangements, is one way of regulating physiological function caused by changes in protein environment. Specifically, protonation of histidine residues has been implicated in pH-dependent conformational switching in several systems, including the diphtheria toxin translocation (T) domain, which is responsible for the toxin's cellular entry via the endosomal pathway. Our previous studies a) identified protonation of H257 as a major component of the T domain's conformational switch and b) suggested the possibility of a neighboring H223 acting as a modulator, affecting the protonation of H257 and preventing premature conformational changes outside the endosome. To verify this "safety-latch" hypothesis, we report here the pH-dependent folding and membrane interactions of the T domain of the wild-type and that of the H223Q mutant, which lacks the latch. Thermal unfolding of the T domain, measured by circular dichroism, revealed that the reduction in the transition temperature for helical unfolding for an H223Q mutant starts at less acidic conditions (pH <7.5) relative to the wild-type protein (pH <6.5). Hydrogen-deuterium-exchange mass spectrometry demonstrates that the H223Q replacement results in a loss of stability of the amphipathic helices TH1-3 and the hydrophobic core helix TH8 at pH 6.5. That this destabilization occurs in solution correlates well with the pH-range shift for the onset of the membrane permeabilization and translocation activity of the T domain, confirming our initial hypothesis that H223 protonation guards against early refolding. Taken together, these results demonstrate that histidine protonation can fine-tune pH-dependent switching in physiologically relevant systems.
Collapse
Affiliation(s)
- Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
13
|
Hanč P, Schulz O, Fischbach H, Martin SR, Kjær S, Reis e Sousa C. A pH- and ionic strength-dependent conformational change in the neck region regulates DNGR-1 function in dendritic cells. EMBO J 2016; 35:2484-2497. [PMID: 27753620 PMCID: PMC5109244 DOI: 10.15252/embj.201694695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/18/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
DNGR-1 is receptor expressed by certain dendritic cell (DC) subsets and by DC precursors in mouse. It possesses a C-type lectin-like domain (CTLD) followed by a poorly characterized neck region coupled to a transmembrane region and short intracellular tail. The CTLD of DNGR-1 binds F-actin exposed by dead cell corpses and causes the receptor to signal and potentiate cross-presentation of dead cell-associated antigens by DCs. Here, we describe a conformational change that occurs in the neck region of DNGR-1 in a pH- and ionic strength-dependent manner and that controls cross-presentation of dead cell-associated antigens. We identify residues in the neck region that, when mutated, lock DNGR-1 in one of the two conformational states to potentiate cross-presentation. In contrast, we show that chimeric proteins in which the neck region of DNGR-1 is replaced by that of unrelated C-type lectin receptors fail to promote cross-presentation. Our results suggest that the neck region of DNGR-1 is an integral receptor component that senses receptor progression through the endocytic pathway and has evolved to maximize extraction of antigens from cell corpses, coupling DNGR-1 function to its cellular localization.
Collapse
Affiliation(s)
- Pavel Hanč
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Hanna Fischbach
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | |
Collapse
|
14
|
White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593-614. [PMID: 26935856 PMCID: PMC4866878 DOI: 10.1111/tra.12389] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion‐triggering mechanisms. A key take‐home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Roth CM. Delivery of Genes and Oligonucleotides. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Ghatak S, Sikdar SK. Lactate modulates the intracellular pH sensitivity of human TREK1 channels. Pflugers Arch 2016; 468:825-36. [PMID: 26843094 DOI: 10.1007/s00424-016-1795-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Tissue acidosis and high lactate concentrations are associated with cerebral ischaemia. The degree of acidosis is dependent on circulating glucose concentration, hyperglycaemia being associated with increased acidosis. Among other agents, lactate and protons have been shown to activate the leak potassium channel; TREK1 (TWIK related potassium channel 1) from the intracellular side and its increased activity is implicated in tolerance towards ischaemic cell damage. In the present study, we show that ischaemic concentrations of lactate (30 mM) at pH 7.0 and 6.5, commonly observed during ischemia, cause robust potentiation of human TREK1 (hTREK1) activity at single-channel level in cell-free inside-out membrane patches, while 30 mM lactate at pH 6.0 to 5.5, commonly observed during hyperglycaemic ischemia, reduces hTREK1 channel activity significantly. The biphasic effect of 30 mM lactate (ischaemic concentrations) on modulation of hTREK1 by varying pH conditions is specific since basal concentrations of lactate (3 mM) and 30 mM pyruvate at pH 7.0 and 5.5 failed to show similar effect as lactate. Experiments with deletion and point mutants of hTREK1 channel suggest that lactate changes the pH modulation of hTREK1 by interacting differently with the histidine residue at 328th position (H328) above and below its pKa (∼6.0) in the intracellular carboxyl-terminal domain of TREK1. This lactate-induced pH modulation of hTREK1 is absent in C-terminal deletion mutant, CTDΔ100, and is similar in E321A-hTREK1 mutant as in wild-type hTREK1 suggesting that it is independent of pH-sensitive glutamate residue at 321st position. Such a differential pH-dependent effect of lactate on an ion channel function has not been reported earlier and has important implications in different stages of ischaemia.
Collapse
Affiliation(s)
- Swagata Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
17
|
Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity. J Virol 2015; 89:10602-11. [PMID: 26269180 DOI: 10.1128/jvi.00939-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well as viral adaptation to hosts. HA from the pandemic 2009 H1N1 influenza A virus is less stable than other recent seasonal influenza virus HAs, but the molecular interactions that contribute to HA stability are not fully understood. Here we identify molecular interactions between specific residues in the surface and transmembrane subunits of HA that help regulate the HA conformational changes needed for HA stability and virus entry. These findings contribute to our understanding of the molecular mechanisms controlling HA function and antigen stability.
Collapse
|
18
|
Cook JD, Soto-Montoya H, Korpela MK, Lee JE. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor. J Biol Chem 2015; 290:18495-504. [PMID: 26082488 DOI: 10.1074/jbc.m115.644781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion.
Collapse
Affiliation(s)
- Jonathan D Cook
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hazel Soto-Montoya
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Markus K Korpela
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeffrey E Lee
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
19
|
A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion. J Virol 2014; 88:13189-200. [PMID: 25187542 DOI: 10.1128/jvi.01704-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pK(a) of ∼ 6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pK(a). The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pK(a)-modulating effect of neighboring residues. IMPORTANCE The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of the HA conformational change via its pK(a). Mutations of neighboring residues which may affect the pK(a) of His184 could play an important role in virus adaptation to a specific host. We suggest that mutation of neighboring residue 216, which is present in all highly pathogenic phenotypes of H5N1 influenza virus strains, contributed to the adaptation of these viruses to the human host via its effect on the pKa of His184.
Collapse
|
20
|
Molecular Dynamics: The Computational Molecular Microscope. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2014. [DOI: 10.5812/rijm.20117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|