1
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Danishuddin, Jamal MS, Song KS, Lee KW, Kim JJ, Park YM. Revolutionizing Drug Targeting Strategies: Integrating Artificial Intelligence and Structure-Based Methods in PROTAC Development. Pharmaceuticals (Basel) 2023; 16:1649. [PMID: 38139776 PMCID: PMC10747325 DOI: 10.3390/ph16121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
PROteolysis TArgeting Chimera (PROTAC) is an emerging technology in chemical biology and drug discovery. This technique facilitates the complete removal of the target proteins that are "undruggable" or challenging to target through chemical molecules via the Ubiquitin-Proteasome System (UPS). PROTACs have been widely explored and outperformed not only in cancer but also in other diseases. During the past few decades, several academic institutes and pharma companies have poured more efforts into PROTAC-related technologies, setting the stage for several major degrader trial readouts in clinical phases. Despite their promising results, the formation of robust ternary orientation, off-target activity, poor permeability, and binding affinity are some of the limitations that hinder their development. Recent advancements in computational technologies have facilitated progress in the development of PROTACs. Researchers have been able to utilize these technologies to explore a wider range of E3 ligases and optimize linkers, thereby gaining a better understanding of the effectiveness and safety of PROTACs in clinical settings. In this review, we briefly explore the computational strategies reported to date for the formation of PROTAC components and discuss the key challenges and opportunities for further research in this area.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | - Kyoung-Seob Song
- Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan 49104, Republic of Korea;
| | - Keun-Woo Lee
- Division of Life Science, Department of Bio & Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
- Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University, 209, Neugdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
3
|
Dynamic stability of salt stable cowpea chlorotic mottle virus capsid protein dimers and pentamers of dimers. Sci Rep 2022; 12:14251. [PMID: 35995818 PMCID: PMC9395436 DOI: 10.1038/s41598-022-18019-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Intermediates of the self-assembly process of the salt stable cowpea chlorotic mottle virus (ss-CCMV) capsid can be modelled atomistically on realistic computational timescales either by studying oligomers in equilibrium or by focusing on their dissociation instead of their association. Our previous studies showed that among the three possible dimer interfaces in the icosahedral capsid, two are thermodynamically relevant for capsid formation. The aim of the current study is to evaluate the relative structural stabilities of the three different ss-CCMV dimers and to find and understand the conditions that lead to their dissociation. Long timescale molecular dynamics simulations at 300 K of the various dimers and of the pentamer of dimers underscore the importance of large contact surfaces on stabilizing the capsid subunits within an oligomer. Simulations in implicit solvent show that at higher temperature (350 K), the N-terminal tails of the protein units act as tethers, delaying dissociation for all but the most stable interface. The pentamer of dimers is also found to be stable on long timescales at 300 K, with an inherent flexibility of the outer protein chains.
Collapse
|
4
|
Wu J, Zhou Y, Zhang J, Zhang HX, Jia R. Molecular Dynamics Simulation Investigation of the Binding and Interaction of the EphA6-Odin Protein Complex. J Phys Chem B 2022; 126:4914-4924. [PMID: 35732074 DOI: 10.1021/acs.jpcb.2c01492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interaction plays an important role in the development of almost all cells. Elucidating the dynamic binding and affinity of a protein-protein complex is essential for understanding the biological functions of proteins. EphA6 and Odin proteins are members of the Eph (erythropoietin-producing hepatocyte) receptor family and the Anks (ankyrin repeat and sterile α motif domain-containing) family, respectively. Odin significantly functions in regulating endocytosis, degradation, and stability of EphA receptors. In this work, the key residues of the interaction interface were determined through a hydrogen bond, root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and dynamic correlation analysis of the conventional molecular dynamics (MD) simulations. The calculated standard binding free energy, -7.92 kcal/mol, between EphA6 and Odin is quite consistent with the experimental measurement value, -8.73 kcal/mol. By the combination of several MD simulation techniques, our investigation of the binding process reveals the detailed representative characteristics of the entire binding pathway at the molecular level. Based on the obtained potential of the mean force (PMF) curve, the analysis of the simulation trajectories shows that the residue Arg1013 in the receptor EphA6 is responsible for capturing Asp739 and Asp740 in the ligand Odin during the initial stage of binding. In the later stage of binding, the hydrogen bonds and salt bridges between a series of residues Lys973, Leu1007, Gly1009, His1010, and Arg1012 in the receptor and residues Leu735, Asn736, Asp739, Asp740, and Asp753 in the ligand mainly contribute to the stability of the protein complex. In addition, the specific change process of the receptor-ligand-binding mode is also clarified during the binding process. Our present simulation will promote a deep understanding of the protein-protein interaction, and the identified key interresidue interaction will be theoretical guidance for the design of protein drugs.
Collapse
Affiliation(s)
- Jianhua Wu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China
| | - Yu Zhou
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin, People's Republic of China
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China
| | - Ran Jia
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China
| |
Collapse
|
5
|
Chen X, Leyendecker S, van den Bedem H. Kinematic Vibrational Entropy Assessment and Analysis of SARS CoV-2 Main Protease. J Chem Inf Model 2022; 62:2869-2879. [PMID: 35594568 DOI: 10.1021/acs.jcim.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-dimensional conformations of a protein influence its function and select for the ligands it can interact with. The total free energy change during protein-ligand complex formation includes enthalphic and entropic components, which together report on the binding affinity and conformational states of the complex. However, determining the entropic contribution is computationally burdensome. Here, we apply kinematic flexibility analysis (KFA) to efficiently estimate vibrational frequencies from static protein and protein-ligand structures. The vibrational frequencies, in turn, determine the vibrational entropies of the structures and their complexes. Our estimates of the vibrational entropy change caused by ligand binding compare favorably to values obtained from a dynamic Normal Mode Analysis (NMA). Higher correlation factors can be achieved by increasing the distance cutoff in the potential energy model. Furthermore, we apply our new method to analyze the entropy changes of the SARS CoV-2 main protease when binding with different ligand inhibitors, which is relevant for the design of potential drugs.
Collapse
Affiliation(s)
- Xiyu Chen
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sigrid Leyendecker
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 94720 San Francisco, California, United States
| |
Collapse
|
6
|
Barazorda-Ccahuana HL, Nedyalkova M, Mas F, Madurga S. Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers (Basel) 2021; 13:3823. [PMID: 34771379 PMCID: PMC8587287 DOI: 10.3390/polym13213823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miroslava Nedyalkova
- Department of Inorganic Chemistry, University of Sofia “St. Kl. Okhridski”, 1164 Sofia, Bulgaria;
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
7
|
Damre M, Dayananda A, Varikoti RA, Stan G, Dima RI. Factors underlying asymmetric pore dynamics of disaggregase and microtubule-severing AAA+ machines. Biophys J 2021; 120:3437-3454. [PMID: 34181904 PMCID: PMC8391056 DOI: 10.1016/j.bpj.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Disaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring-shaped hexamers that enable protein remodeling by coupling large-scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed the asymmetric pore motions and intraring interactions that support them by performing extensive molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexameric pores of severing proteins and of the nucleotide-binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central pore loops. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong interprotomer collaboration. Severing proteins have weaker interprotomer coupling and stronger intraprotomer stabilization through salt bridges involving pore loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker interprotomer coupling through salt bridges formed by noncanonical loops and stronger intraprotomer coupling. Analysis of collective motions of PL1 loops indicates that the largest amplitude motions in the spiral complex of spastin and ClpB involve axial excursions of the loops, whereas for katanin they involve opening and closing of the central pore. All three motors execute primarily axial excursions in the ring complex. These results suggest distinct substrate processing mechanisms of remodeling and translocation by ClpB and spastin compared to katanin, thus providing dynamic support for the differential action of the two severing proteins. Relaxation dynamics of the distance between the PL1 loops and the center of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens to hundreds of microseconds on millisecond experimental timescales. For ClpB, the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.
Collapse
Affiliation(s)
- Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ashan Dayananda
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
8
|
Beg AZ, Farhat N, Khan AU. Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. INFECTION GENETICS AND EVOLUTION 2021; 93:104982. [PMID: 34186254 DOI: 10.1016/j.meegid.2021.104982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) displays high drug resistance and biofilm-mediated adaptability, which makes its infections difficult to treat. Alternative intervention methods and targets have made such infections treatment manageable. One of the biofilm components, functional amyloids of Pseudomonas (Fap) is correlated positively with virulence and mucoidy phenotype found in infection in cystic fibrosis (CF) patients. Extracellular accessibility, conservation across P. aeruginosa isolates and linkage with lung infections phenotype in CF patients, makes Fap a promising intervention target. Furthermore, the reported effect of bacterial amyloid on neuronal function and immune response makes it a targetable candidate. In the current study, Fap C protein and its immediate interactions were explored to extract antigenic T-cell and B-cell epitopes. A combination of epitopes and peptide adjuvants has been linked to derive vaccine candidate structures. The vaccine candidates were validated for antigenicity, allergenicity, physiochemical properties, stability and interactions with TLRs and MHC alleles. Immunosimulation studies have demonstrated that vaccines elicit Th1 dominated response, which can assist in good prognosis of infection in CF patients.
Collapse
Affiliation(s)
- Ayesha Z Beg
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; Centre for Bioinformatic on Antimicrobial Resistance, IBU, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
9
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Madhavan SM, Buck M. The Relationship between APOL1 Structure and Function: Clinical Implications. KIDNEY360 2020; 2:134-140. [PMID: 35368828 PMCID: PMC8785724 DOI: 10.34067/kid.0002482020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
Common variants in the APOL1 gene are associated with an increased risk of nondiabetic kidney disease in individuals of African ancestry. Mechanisms by which APOL1 variants mediate kidney disease pathogenesis are not well understood. Amino acid changes resulting from the kidney disease-associated APOL1 variants alter the three-dimensional structure and conformational dynamics of the C-terminal α-helical domain of the protein, which can rationalize the functional consequences. Understanding the three-dimensional structure of the protein, with and without the risk variants, can provide insights into the pathogenesis of kidney diseases mediated by APOL1 variants.
Collapse
Affiliation(s)
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
11
|
Vincenzi M, Mercurio FA, Leone M. Sam Domains in Multiple Diseases. Curr Med Chem 2020; 27:450-476. [PMID: 30306850 DOI: 10.2174/0929867325666181009114445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/26/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The sterile alpha motif (Sam) domain is a small helical protein module, able to undergo homo- and hetero-oligomerization, as well as polymerization, thus forming different types of protein architectures. A few Sam domains are involved in pathological processes and consequently, they represent valuable targets for the development of new potential therapeutic routes. This study intends to collect state-of-the-art knowledge on the different modes by which Sam domains can favor disease onset and progression. METHODS This review was build up by searching throughout the literature, for: a) the structural properties of Sam domains, b) interactions mediated by a Sam module, c) presence of a Sam domain in proteins relevant for a specific disease. RESULTS Sam domains appear crucial in many diseases including cancer, renal disorders, cataracts. Often pathologies are linked to mutations directly positioned in the Sam domains that alter their stability and/or affect interactions that are crucial for proper protein functions. In only a few diseases, the Sam motif plays a kind of "side role" and cooperates to the pathological event by enhancing the action of a different protein domain. CONCLUSION Considering the many roles of the Sam domain into a significant variety of diseases, more efforts and novel drug discovery campaigns need to be engaged to find out small molecules and/or peptides targeting Sam domains. Such compounds may represent the pillars on which to build novel therapeutic strategies to cure different pathologies.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone, 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone, 16, 80134 Naples, Italy
| |
Collapse
|
12
|
Li ZL, Buck M. Modified Potential Functions Result in Enhanced Predictions of a Protein Complex by All-Atom Molecular Dynamics Simulations, Confirming a Stepwise Association Process for Native Protein-Protein Interactions. J Chem Theory Comput 2019; 15:4318-4331. [PMID: 31241940 DOI: 10.1021/acs.jctc.9b00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relative prevalence of native protein-protein interactions (PPIs) are the cornerstone for understanding the structure, dynamics and mechanisms of function of protein complexes. In this study, we develop a scheme for scaling the protein-water interaction in the CHARMM36 force field, in order to better fit the solvation free energy of amino acids side-chain analogues. We find that the molecular dynamics simulation with the scaled force field, CHARMM36s, as well as a recently released version, CHARMM36m, effectively improve on the overly sticky association of proteins, such as ubiquitin. We investigate the formation of a heterodimer protein complex between the SAM domains of the EphA2 receptor and the SHIP2 enzyme by performing a combined total of 48 μs simulations with the different potential functions. While the native SAM heterodimer is only predicted at a low rate of 6.7% with the original CHARMM36 force field, the yield is increased to 16.7% with CHARMM36s, and to 18.3% with CHARMM36m. By analyzing the 25 native SAM complexes formed in the simulations, we find that their formation involves a preorientation guided by Coulomb interactions, consistent with an electrostatic steering mechanism. In 12 cases, the complex could directly transform to the native protein interaction surfaces with only small adjustments in domain orientation. In the other 13 cases, orientational and/or translational adjustments are needed to reach the native complex. Although the tendency for non-native complexes to dissociate has nearly doubled with the modified potential functions, a dissociation followed by a reassociation to the correct complex structure is still rare. Instead, the remaining non-native complexes undergo configurational changes/surface searching, which, however, rarely leads to native structures on a time scale of 250 ns. These observations provide a rich picture of the mechanisms of protein-protein complex formation and suggest that computational predictions of native complex PPIs could be improved further.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Matthias Buck
- Department of Physiology and Biophysics , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States.,Departments of Pharmacology and Neurosciences, and Case Comprehensive Cancer Center , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
13
|
Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C, Isupov MN, Opatowsky Y. Structural Evidence for an Octameric Ring Arrangement of SARM1. J Mol Biol 2019; 431:3591-3605. [PMID: 31278906 DOI: 10.1016/j.jmb.2019.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
SARM1 induces axonal degeneration in response to various insults and is therefore considered an attractive drug target for the treatment of neuro-degenerative diseases as well as for brain and spinal cord injuries. SARM1 activity depends on the integrity of the protein's SAM domains, as well as on the enzymatic conversion of NAD+ to ADPR (ADP Ribose) products by the SARM1's TIR domain. Therefore, inhibition of either SAM or TIR functions may constitute an effective therapeutic strategy. However, there is currently no SARM1-directed therapeutic approach available because of an insufficient structural and mechanistic understanding of this protein. In this study, we found that SARM1 assembles into an octameric ring. This arrangement was not described before in other SAM proteins, but is reminiscent of the apoptosome and inflammasome-well-known apoptotic ring-like oligomers. We show that both SARM1 and the isolated tandem SAM1-2 domains form octamers in solution, and electron microscopy analysis reveals an octameric ring of SARM1. We determined the crystal structure of SAM1-2 and found that it also forms a closed octameric ring in the crystal lattice. The SAM1-2 ring interactions are mediated by complementing "lock and key" hydrophobic grooves and inserts and electrostatic charges between the neighboring protomers. We have mutated several interacting SAM1-2 interfaces and measured how these mutations affect SARM1 apoptotic activity in cultured cells, and in this way identified critical oligomerization sites that facilitate cell death. These results highlight the importance of oligomerization for SARM1 function and reveal critical epitopes for future targeted drug development.
Collapse
Affiliation(s)
- Michael Sporny
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Israel
| | - Valeria Ulisse
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Allison Volf
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Carsten Mim
- Department of Biomedical Engineering and Health Solutions, Royal Technical Institute (KTH), Stockholm, Sweden; Department of Nutrition and Biosciences, Karolinska Institute, Huddinge, Sweden
| | | | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
14
|
Park S, Glover KJ, Im W. U-shaped caveolin-1 conformations are tightly regulated by hydrogen bonds with lipids. J Comput Chem 2019; 40:1570-1577. [PMID: 30828836 PMCID: PMC6458063 DOI: 10.1002/jcc.25807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 02/10/2019] [Indexed: 12/26/2022]
Abstract
The structure and dynamics of a truncated (residues 82-136) caveolin-1 (Cav1) construct having a helix-break-helix motif are explored by both all-atom free energy and molecular dynamics (MD) simulations in an explicit bilayer membrane. Two stable Cav1 conformations with small (LB-Cav1) and large hinge angles (RB-Cav1) between two helices are identified although their relative free energy cannot be reliably estimated due to the sampling issues. RB-Cav1s contain one or two lipids residing between the helices that are hydrogen bonded (h-bonded) to both helices in a multidentate fashion. LB-Cav1s show the helices with mono-dentate lipid h-bond interactions or multidentate interactions limited to a single helix at most. The two conformational states of Cav1 remain their initial state during 2-μs MD simulation, suggesting that there is a significant hidden barrier (other than the insertion depth of Cav1 and its hinge angle) and the Cav1 conformational states are tightly regulated by the h-bonds between Cav1 and lipids along with the associated lipid rearrangement during the course of Cav1 conformational changes. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soohyung Park
- Department of Biological Sciences and Bioengineering, Lehigh University, 111 Research Dr. Bethlehem, Pennsylvania, United States, 18015
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania, United States, 18015
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering, Lehigh University, 111 Research Dr. Bethlehem, Pennsylvania, United States, 18015
| |
Collapse
|
15
|
Herrera-Zúñiga LD, Millán-Pacheco C, Viniegra-González G, Villegas E, Arregui L, Rojo-Domínguez A. Molecular dynamics on laccase from Trametes versicolor to examine thermal stability induced by salt bridges. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Wang R, Leung PYM, Huang F, Tang Q, Kaneko T, Huang M, Li Z, Li SSC, Wang Y, Xia J. Reverse Binding Mode of Phosphotyrosine Peptides with SH2 Protein. Biochemistry 2018; 57:5257-5269. [PMID: 30091902 DOI: 10.1021/acs.biochem.8b00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Discerning the different interaction states during dynamic protein-ligand binding is difficult. Here we apply site-specific cysteine-α-chloroacetyl cross-linking to scrutinize the binding between the Src homology 2 (SH2) domain and phosphotyrosine (pY) peptides, a highly dynamic interaction that is a key to cellular signal transduction. From a model SH2 protein to a set of representative SH2 domains, we showed here that a proximity-induced cysteine-α-chloroacetyl reaction cross-linked two spatially adjacent chemical groups as a result of the binding interaction, and reciprocally, the information about the interaction states can be deduced from the cross-linked products. To our surprise, we found SH2 domains can adopt a reverse binding mode with "single-pronged", "two-pronged", and "half" pY peptides. This finding was further supported by a set of 500 ns molecular dynamics simulations. This serendipitous finding defies the canonical theory of SH2 binding, suggests a possible answer about the source of the versatility of SH2 signaling, and sets a model for other protein binding interactions.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry , Western University , London , Ontario N6A 5C1 , Canada
| | | | | | | | - Tomonori Kaneko
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry , Western University , London , Ontario N6A 5C1 , Canada
| | - Mei Huang
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry , Western University , London , Ontario N6A 5C1 , Canada
| | - Zigang Li
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen 518055 , China
| | - Shawn S C Li
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry , Western University , London , Ontario N6A 5C1 , Canada
| | | | | |
Collapse
|
17
|
Mercurio FA, Di Natale C, Pirone L, Iannitti R, Marasco D, Pedone EM, Palumbo R, Leone M. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors. Sci Rep 2017; 7:17474. [PMID: 29234063 PMCID: PMC5727260 DOI: 10.1038/s41598-017-17684-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.
Collapse
Affiliation(s)
- Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Concetta Di Natale
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Roberta Iannitti
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy.,Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|
18
|
A role of the SAM domain in EphA2 receptor activation. Sci Rep 2017; 7:45084. [PMID: 28338017 PMCID: PMC5364462 DOI: 10.1038/srep45084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Among the 20 subfamilies of protein receptor tyrosine kinases (RTKs), Eph receptors are unique in possessing a sterile alpha motif (SAM domain) at their C-terminal ends. However, the functions of SAM domains in Eph receptors remain elusive. Here we report on a combined cell biology and quantitative fluorescence study to investigate the role of the SAM domain in EphA2 function. We observed elevated tyrosine autophosphorylation levels upon deletion of the EphA2 SAM domain (EphA2ΔS) in DU145 and PC3 prostate cancer cells and a skin tumor cell line derived from EphA1/A2 knockout mice. These results suggest that SAM domain deletion induced constitutive activation of EphA2 kinase activity. In order to explain these effects, we applied fluorescence correlation spectroscopy to investigate the lateral molecular organization of EphA2. Our results indicate that SAM domain deletion (EphA2ΔS-GFP) increases oligomerization compared to the full length receptor (EphA2FL-GFP). Stimulation with ephrinA1, a ligand for EphA2, induced further oligomerization and activation of EphA2FL-GFP. The SAM domain deletion mutant, EphA2ΔS-GFP, also underwent further oligomerization upon ephrinA1 stimulation, but the oligomers were larger than those observed for EphA2FL-GFP. Based on these results, we conclude that the EphA2 SAM domain inhibits kinase activity by reducing receptor oligomerization.
Collapse
|
19
|
P Barros E, Malmstrom RD, Nourbakhsh K, Del Rio JC, Kornev AP, Taylor SS, Amaro RE. Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα. Biochemistry 2017; 56:1536-1545. [PMID: 28221775 DOI: 10.1021/acs.biochem.6b01152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.
Collapse
Affiliation(s)
- Emília P Barros
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| | - Robert D Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| | - Kimya Nourbakhsh
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Jason C Del Rio
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States.,National Biomedical Computation Resource, University of California, San Diego , La Jolla, California 92093-0446, United States
| |
Collapse
|
20
|
Zhang L, Buck M. Molecular Dynamics Simulations Reveal Isoform Specific Contact Dynamics between the Plexin Rho GTPase Binding Domain (RBD) and Small Rho GTPases Rac1 and Rnd1. J Phys Chem B 2017; 121:1485-1498. [PMID: 28103666 DOI: 10.1021/acs.jpcb.6b11022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Plexin family of transmembrane receptors are unique in that their intracellular region interacts directly with small GTPases of the Rho family. The Rho GTPase binding domain of plexin (RBD)-which is responsible for these interactions-can bind with Rac1 as well as Rnd1 GTPases. GTPase complexes have been crystallized with the RBDs of plexinA1, -A2, and -B1. The protein association is thought to elicit different functional responses in a GTPase and plexin isoform specific manner, but the origin of this is unknown. In this project, we investigated complexes between several RBD and Rac1/Rnd1 GTPases using multimicrosecond length all atom molecular dynamics simulations, also with reference to the free forms of the RBDs and GTPases. In accord with the crystallographic data, the RBDs experience more structural changes than Rho-GTPases upon complex formation. Changes in protein dynamics and networks of correlated motions are revealed by analyzing dihedral angle fluctuations in the proteins. The extent of these changes differs between the different RBDs and also between the Rac1 and Rnd1 GTPases. While the RBDs in the free and bound states have similar-if not decreased-correlations, correlations within the GTPases are increased upon binding. Mapping highly correlated residues to the structures, it is found that the plexinA1, -B1, and -A2 RBDs all have similar communication pathways within the ubiquitin fold, but that different residues are involved. Dynamic network analyses indicate that plexinA1 and -B1 RBDs interact with small GTPases in a similar manner, whereas complexes with the plexinA2 RBD display different features. Importantly complexes with Rnd1 have a considerable number of dynamic correlations and network connections between the proteins, whereas such features are missing in the RBD-Rac1 complexes. Overall, the simulations suggest mechanisms that are consistent with the experimental data on plexinB1 and indicate RBD and GTPase isoform specific changes in protein dynamics upon complex formation.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering Department, Tennessee Technological University , 1 William L Jones Dr., Cookeville, Tennessee 38505, United States
| | - Matthias Buck
- Department of Physiology and Biophysics, Medical School of Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
21
|
Mereghetti P, Maccari G, Spampinato GLB, Tozzini V. Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models. J Phys Chem B 2016; 120:8571-9. [PMID: 27150459 DOI: 10.1021/acs.jpcb.6b02555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course.
Collapse
Affiliation(s)
- Paolo Mereghetti
- Center for Nanotechnology and Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giuseppe Maccari
- Center for Nanotechnology and Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Valentina Tozzini
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore , Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
22
|
Zhang L, Borthakur S, Buck M. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations. Biophys J 2016; 110:877-86. [PMID: 26910424 PMCID: PMC4776036 DOI: 10.1016/j.bpj.2015.12.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex.
Collapse
Affiliation(s)
- Liqun Zhang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Susmita Borthakur
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
23
|
Etheve L, Martin J, Lavery R. Dynamics and recognition within a protein-DNA complex: a molecular dynamics study of the SKN-1/DNA interaction. Nucleic Acids Res 2015; 44:1440-8. [PMID: 26721385 PMCID: PMC4756839 DOI: 10.1093/nar/gkv1511] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular dynamics simulations of the Caenorhabditis elegans transcription factor SKN-1 bound to its cognate DNA site show that the protein–DNA interface undergoes significant dynamics on the microsecond timescale. A detailed analysis of the simulation shows that movements of two key arginine side chains between the major groove and the backbone of DNA generate distinct conformational sub-states that each recognize only part of the consensus binding sequence of SKN-1, while the experimentally observed binding specificity results from a time-averaged view of the dynamic recognition occurring within this complex.
Collapse
Affiliation(s)
- Loïc Etheve
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Juliette Martin
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| | - Richard Lavery
- BMSSI UMR 5086 CNRS/Univ. Lyon I, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, Lyon 69367, France
| |
Collapse
|
24
|
Mercurio FA, Di Natale C, Pirone L, Scognamiglio PL, Marasco D, Pedone EM, Saviano M, Leone M. Peptide Fragments of Odin-Sam1: Conformational Analysis and Interaction Studies with EphA2-Sam. Chembiochem 2015; 16:1629-36. [DOI: 10.1002/cbic.201500197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/09/2022]
|
25
|
Paudyal S, Alfonso-Prieto M, Carnevale V, Redhu SK, Klein ML, Nicholson AW. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB. Proteins 2015; 83:459-72. [PMID: 25546632 PMCID: PMC4329070 DOI: 10.1002/prot.24751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/06/2023]
Abstract
Ribonuclease III is a conserved bacterial endonuclease that cleaves double-stranded(ds) structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control that in turn confer global post-transcriptional regulation. The Escherichia coli macrodomain protein YmdB directly interacts with RNase III, and an increase in YmdB amount in vivo correlates with a reduction in RNase III activity. Here, a computational-based structural analysis was performed to identify atomic-level features of the YmdB-RNase III interaction. The docking of monomeric E. coli YmdB with a homology model of the E. coli RNase III homodimer yields a complex that exhibits an interaction of the conserved YmdB residue R40 with specific RNase III residues at the subunit interface. Surface Plasmon Resonance (SPR) analysis provided a KD of 61 nM for the complex, corresponding to a binding free energy (ΔG) of −9.9 kcal/mol. YmdB R40 and RNase III D128 were identified by in silico alanine mutagenesis as thermodynamically important interacting partners. Consistent with the prediction, the YmdB R40A mutation causes a 16-fold increase in KD (ΔΔG = +1.8 kcal/mol), as measured by SPR, and the D128A mutation in both RNase III subunits (D128A/D128′A) causes an 83-fold increase in KD (ΔΔG = +2.7 kcal/mol). The greater effect of the D128A/D128′A mutation may reflect an altered RNase III secondary structure, as revealed by CD spectroscopy, which also may explain the significant reduction in catalytic activity in vitro. The features of the modeled complex relevant to potential RNase III regulatory mechanisms are discussed. Proteins 2015; 83:459–472. © 2014 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samridhdi Paudyal
- Department of Biology, Temple University, Philadelphia, Pennsylvania, 19122
| | | | | | | | | | | |
Collapse
|
26
|
Mercurio FA, Scognamiglio PL, Di Natale C, Marasco D, Pellecchia M, Leone M. CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam. Biopolymers 2014; 101:1088-98. [DOI: 10.1002/bip.22512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/07/2022]
Affiliation(s)
| | - Pasqualina L. Scognamiglio
- Department of Pharmacy; University "Federico II"; Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); Naples Italy
- IIT Italian Institute of Technology; Naples Italy
| | - Concetta Di Natale
- Department of Pharmacy; University "Federico II"; Naples Italy
- IIT Italian Institute of Technology; Naples Italy
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging (CNR); Naples Italy
- Department of Pharmacy; University "Federico II"; Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); Naples Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR); Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); Naples Italy
| |
Collapse
|
27
|
Borthakur S, Lee H, Kim S, Wang BC, Buck M. Binding and function of phosphotyrosines of the Ephrin A2 (EphA2) receptor using synthetic sterile α motif (SAM) domains. J Biol Chem 2014; 289:19694-703. [PMID: 24825902 DOI: 10.1074/jbc.m114.567602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr(921), Tyr(930), and Tyr(960), has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr(921) and Tyr(930) enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling.
Collapse
Affiliation(s)
| | - HyeongJu Lee
- From the Departments of Physiology and Biophysics
| | | | - Bing-Cheng Wang
- From the Departments of Physiology and Biophysics, Pharmacology, and the Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio 44109the Case Comprehensive Cancer Center, and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, the Case Comprehensive Cancer Center, and Neurosciences, the Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106 and
| |
Collapse
|