1
|
Pal S, Udgaonkar JB. Slow Misfolding of a Molten Globule form of a Mutant Prion Protein Variant into a β-rich Dimer. J Mol Biol 2024; 436:168736. [PMID: 39097185 DOI: 10.1016/j.jmb.2024.168736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Misfolding of the prion protein is linked to multiple neurodegenerative diseases. A better understanding of the process requires the identification and structural characterization of intermediate conformations via which misfolding proceeds. In this study, three conserved aromatic residues (Tyr168, Phe174, and Tyr217) located in the C-terminal domain of mouse PrP (wt moPrP) were mutated to Ala. The resultant mutant protein, 3A moPrP, is shown to adopt a molten globule (MG)-like native conformation. Hydrogen-deuterium exchange studies coupled with mass spectrometry revealed that for 3A moPrP, the free energy gap between the MG-like native conformation and misfolding-prone partially unfolded forms is reduced. Consequently, 3A moPrP misfolds in native conditions even in the absence of salt, unlike wt moPrP, which requires the addition of salt to misfold. 3A moPrP misfolds to a β-rich dimer in the absence of salt, which can rapidly form an oligomer upon the addition of salt. In the presence of salt, 3A moPrP misfolds to a β-rich oligomer about a thousand-fold faster than wt moPrP. Importantly, the misfolded structure of the dimer is similar to that of the salt-induced oligomer. Misfolding to oligomer seems to be induced at the level of the dimeric unit by monomer-monomer association, and the oligomer grows by accretion of misfolded dimeric units. Additionally, it is shown that the conserved aromatic residues collectively stabilize not only monomeric protein, but also the structural core of the β-rich oligomers. Finally, it is also shown that 3A moPrP misfolds much faster to amyloid-fibrils than does the wt protein.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research Pune, Pune 411008, India.
| |
Collapse
|
2
|
Patni D, Jha SK. Thermodynamic modulation of folding and aggregation energy landscape by DNA binding of functional domains of TDP-43. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140916. [PMID: 37061152 DOI: 10.1016/j.bbapap.2023.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
TDP-43 is a vital nucleic acid binding protein which forms stress-induced aberrant aggregates in around 97% cases of ALS, a fatal neurodegenerative disease. The functional tandem RRM domain of the protein (TDP-43tRRM) has been shown to undergo amyloid-like aggregation under stress in a pH-dependent fashion. However, the underlying thermodynamic and molecular basis of aggregation and how the energy landscape of folding, stability, and aggregation are coupled and modulated by nucleic acid binding is poorly understood. Here, we show that the pH stress thermodynamically destabilizes the native protein and systematically populates the unfolded-like aggregation-prone molecules which leads to amyloid-like aggregation. We observed that specific DNA binding inhibits aggregation and populates native-like compact monomeric state even under low-pH stress as measured by circular dichroism, ANS binding, size exclusion chromatography, and transmission electron microscopy. We show that DNA-binding thermodynamically stabilizes and populates the native state even under stress and reduces the population of unfolded-like aggregation-prone molecules which leads to systematic aggregation inhibition. Our results suggest that thermodynamic modulation of the folding and aggregation energy landscape by nucleic-acid-like molecules could be a promising approach for effective therapeutic intervention in TDP-43-associated proteinopathies.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Farhana R, Lei R, Pham K, Derrien V, Cedeño J, Rodriquez V, Bernad S, Lima FF, Miksovska J. Globin X: A highly stable intrinsically hexacoordinate globin. J Inorg Biochem 2022; 236:111976. [PMID: 36058051 DOI: 10.1016/j.jinorgbio.2022.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Several novel members of the vertebrate globin family were recently discovered with unique structural features that are not found in traditional penta-coordinate globins. Here we combine structural tools to better understand and recognize molecular determinants that contribute to the stability of hexacoordinate globin X (GbX) from Danio rerio (zebrafish). pH-induced unfolding data indicates increased stability of GbX with pHmid of 1.9 ± 0.1 for met GbXWT, 2.4 ± 0.1 for met GbXC65A, and 3.4 ± 0.1 for GbXH90V. These results are in good agreement with GbX unfolding experiments using GuHCl, where a ΔGunf 13.8 ± 2.5 kcal mol-1 and 16.3 ± 2.6 kcal mol-1 are observed for metGbXWT, and metGbXC65A constructs, respectively, and diminished stability is measured for GbXH90V, ΔGunf = 9.5 ± 3.6 kcal mol-1. The metGbXWT and metGbXC65A also exhibit high thermal stability (melting points of 118 °C and 107 °C, respectively). Native ion mobility - mass spectrometry (IM-MS) experiments showed a narrow charge state distribution (9-12+) characteristics of a native, structured protein; a single mobility band was observed for the native states. Collision induced unfolding IM-MS experiments showed a two-state transition, in good agreement with the solution studies. GbXWT retains the heme over a wide range of charge states, suggesting strong interactions between the prosthetic group and the apoprotein. The above results indicate that in addition to the disulfide bond and the heme iron hexa-coordination, other structural determinants enhance stability of this protein.
Collapse
Affiliation(s)
- Rifat Farhana
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Ruipeng Lei
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Khoa Pham
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Valerie Derrien
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Jonathan Cedeño
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Veronica Rodriquez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Sophie Bernad
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Francisco Fernandez Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America; Biomedical Science Institute, Florida International University, Miami, FL, United States of America
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America; Biomedical Science Institute, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
4
|
The Thermodynamic Stability of Membrane Proteins in Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA. J Membr Biol 2022; 255:485-502. [PMID: 35552784 PMCID: PMC9581862 DOI: 10.1007/s00232-022-00238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022]
Abstract
Extraction of integral membrane proteins into detergents for structural and functional studies often leads to a strong loss in protein stability. The impact of the lipid bilayer on the thermodynamic stability of an integral membrane protein in comparison to its solubilized form in detergent was examined and compared for FhuA from Escherichia coli and for a mutant, FhuAΔ5-160, lacking the N-terminal cork domain. Urea-induced unfolding was monitored by fluorescence spectroscopy to determine the effective free energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo of unfolding. To obtain enthalpic and entropic contributions of unfolding of FhuA, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo were determined at various temperatures. When solubilized in LDAO detergent, wt-FhuA and FhuAΔ5-160 unfolded in a single step. The 155-residue cork domain stabilized wt-FhuA by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta\Delta G{^\text{o}_{\rm u}} $$\end{document}ΔΔGuo~ 40 kJ/mol. Reconstituted into lipid bilayers, wt-FhuA unfolded in two steps, while FhuAΔ5-160 unfolded in a single step, indicating an uncoupled unfolding of the cork domain. For FhuAΔ5-160 at 35 °C, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo increased from ~ 5 kJ/mol in LDAO micelles to about ~ 20 kJ/mol in lipid bilayers, while the temperature of unfolding increased from TM ~ 49 °C in LDAO micelles to TM ~ 75 °C in lipid bilayers. Enthalpies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H{_{\rm M}^\text{o}}$$\end{document}ΔHMowere much larger than free energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta G{^\text{o}_{\rm u}} $$\end{document}ΔGuo, for FhuAΔ5-160 and for wt-FhuA, and compensated by a large gain of entropy upon unfolding. The gain in conformational entropy is expected to be similar for unfolding of FhuA from micelles or bilayers. The strongly increased TM and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H{_{\rm M}^\text{o}}$$\end{document}ΔHMo observed for the lipid bilayer-reconstituted FhuA in comparison to the LDAO-solubilized forms, therefore, very likely arise from a much-increased solvation entropy of FhuA in bilayers.
Collapse
|
5
|
Russo L, Salzano G, Corvino A, Bistaffa E, Moda F, Celauro L, D'Abrosca G, Isernia C, Milardi D, Giachin G, Malgieri G, Legname G, Fattorusso R. Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein. Chem Sci 2022; 13:10406-10427. [PMID: 36277622 PMCID: PMC9473526 DOI: 10.1039/d2sc00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90–231) thermal unfolding and characterize the conformational equilibrium between its native structure and a β-enriched intermediate state, named β-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23–231) and HuPrP(90–231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated μs–ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that β-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the β-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions. The N-ter domain in HuPrP regulates the folding mechanism by tuning the long-range μs–ms dynamics. Removal of the N-ter domain triggers the formation of a stable β-enriched intermediate state inducing amyloid aggregates with HuPrPSc seeding activity.![]()
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Andrea Corvino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, Padova, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
6
|
Identification of thermodynamic quantities of the stability of peptide-MHC I complex using nanoscale differential scanning fluorimetry. Mol Immunol 2021; 141:338-339. [PMID: 34895765 DOI: 10.1016/j.molimm.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
|
7
|
Bhate SH, Udgaonkar JB, Das R. Destabilization of polar interactions in the prion protein triggers misfolding and oligomerization. Protein Sci 2021; 30:2258-2271. [PMID: 34558139 DOI: 10.1002/pro.4188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022]
Abstract
The prion protein (PrP) misfolds and oligomerizes at pH 4 in the presence of physiological salt concentrations. Low pH and salt cause structural perturbations in the monomeric prion protein that lead to misfolding and oligomerization. However, the changes in stability within different regions of the PrP prior to oligomerization are poorly understood. In this study, we have characterized the local stability in PrP at high resolution using amide temperature coefficients (TC ) measured by nuclear magnetic resonance (NMR) spectroscopy. The local stability of PrP was investigated under native as well as oligomerizing conditions. We have also studied the rapidly oligomerizing PrP variant (Q216R) and the protective PrP variant (A6). We report that at low pH, salt destabilizes PrP at several polar residues, and the hydrogen bonds in helices α2 and α3 are weakened. In addition, salt changes the curvature of the α3 helix, which likely disrupts α2-α3 contacts and leads to oligomerization. These results are corroborated by the TC values of rapidly oligomerizing Q216R-PrP. The poly-alanine substitution in A6-PrP stabilizes α2, which prevents oligomerization. Altogether, these results highlight the importance of native polar interactions in determining the stability of PrP and reveal the structural disruptions in PrP that lead to misfolding and oligomerization.
Collapse
Affiliation(s)
- Suhas H Bhate
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, TIFR, Bangalore, India.,Indian Institute for Science Education and Research, Pune, India
| | - Ranabir Das
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
8
|
Bergasa-Caceres F, Rabitz HA. Identification of Two Early Folding Stage Prion Non-Local Contacts Suggested to Serve as Key Steps in Directing the Final Fold to Be Either Native or Pathogenic. Int J Mol Sci 2021; 22:ijms22168619. [PMID: 34445324 PMCID: PMC8395309 DOI: 10.3390/ijms22168619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
The initial steps of the folding pathway of the C-terminal domain of the murine prion protein mPrP(90–231) are predicted based on the sequential collapse model (SCM). A non-local dominant contact is found to form between the connecting region between helix 1 and β-sheet 1 and the C-terminal region of helix 3. This non-local contact nucleates the most populated molten globule-like intermediate along the folding pathway. A less stable early non-local contact between segments 120–124 and 179–183, located in the middle of helix 2, promotes the formation of a less populated molten globule-like intermediate. The formation of the dominant non-local contact constitutes an example of the postulated Nature’s Shortcut to the prion protein collapse into the native structure. The possible role of the less populated molten globule-like intermediate is explored as the potential initiation point for the folding for three pathogenic mutants (T182A, I214V, and Q211P in mouse prion numbering) of the prion protein.
Collapse
|
9
|
Chen EHL, Lin KM, Sang JC, Ho MR, Lee CH, Shih O, Su CJ, Yeh YQ, Jeng US, Chen RPY. Condition-dependent structural collapse in the intrinsically disordered N-terminal domain of prion protein. IUBMB Life 2021; 74:780-793. [PMID: 34288372 DOI: 10.1002/iub.2528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/06/2022]
Abstract
Prion protein is composed of a structure-unsolved N-terminal domain and a globular C-terminal domain. Under limited trypsin digestion, mouse recombinant prion protein can be cleaved into two parts at residue Lys105. Here, we termed these two fragments as the N-domain (sequence 23-105) and the C-domain (sequence 106-230). In this study, the structural properties of the N-domain, the C-domain, and the full-length protein were explored using small-angle X-ray scattering, analytical ultracentrifugation, circular dichroism spectroscopy, and the 8-anilino-1-naphthalenesulfonic acid binding assay. The conformation and size of the prion protein were found to change sensitively under the solvent conditions. The positive residues in the sequence 23-99 of the N-domain were found to be responsible for the enhanced flexibility with the salt concentration reduced below 5 mM. The C-domain containing a hydrophobic patch tends to unfold and aggregate during a salt-induced structural collapse. The N-domain collapsed together with the C-domain at pH 5.2, whereas it collapsed independently at pH 4.2. The positively charged cluster (sequence 100-105) in the N-domain contributed to protecting the exposed hydrophobic surface of the C-domain.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuei-Ming Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jason C Sang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsuan Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan.,Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Bandyopadhyay A, Sannigrahi A, Chattopadhyay K. Membrane composition and lipid to protein ratio modulate amyloid kinetics of yeast prion protein. RSC Chem Biol 2021; 2:592-605. [PMID: 34458802 PMCID: PMC8341755 DOI: 10.1039/d0cb00203h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding of prion aggregation in a membrane environment may help to ameliorate neurodegenerative complications caused by the amyloid forms of prions. Here, we investigated the membrane binding-induced aggregation of yeast prion protein Sup35. Using the combination of fluorescence correlation spectroscopy (FCS) at single molecule resolution and other biophysical studies, we establish that lipid composition and lipid/protein ratio are key modulators of the aggregation kinetics of Sup35. In the presence of a zwitterionic membrane (DMPC), Sup35 exhibited novel biphasic aggregation kinetics at lipid/protein ratios ranging between 20 : 1 and 70 : 1 (termed here as the optimum lipid concentration, OLC). In ratios below (low lipid concentration, LLC) and above (ELC, excess lipid concentration) that range, the aggregation was found to be monophasic. In contrast, in the presence of negatively charged membranes, we did not observe any bi-phasic aggregation kinetics in the entire range of protein to lipid ratios. Our results provide a mechanistic description of the role that membrane concentration/composition-modulated aggregation may play in neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
11
|
Pal S, Pyne P, Samanta N, Ebbinghaus S, Mitra RK. Thermal stability modulation of the native and chemically-unfolded state of bovine serum albumin by amino acids. Phys Chem Chem Phys 2020; 22:179-188. [DOI: 10.1039/c9cp04887a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells are crowded with various cosolutes including salts, osmolytes, nucleic acids, peptides and proteins.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemical
- Biological and Macromolecular Sciences
- S N Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Partha Pyne
- Department of Chemical
- Biological and Macromolecular Sciences
- S N Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Nirnay Samanta
- Institute for Physical and Theoretical Chemistry
- TU Braunschweig
- BRICS
- 56 D-38106 Braunschweig
- Germany
| | - Simon Ebbinghaus
- Institute for Physical and Theoretical Chemistry
- TU Braunschweig
- BRICS
- 56 D-38106 Braunschweig
- Germany
| | - Rajib Kumar Mitra
- Department of Chemical
- Biological and Macromolecular Sciences
- S N Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
12
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
13
|
Zhou S, Shi D, Liu X, Yao X, Da LT, Liu H. pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations. ACS Chem Neurosci 2019; 10:2718-2729. [PMID: 31070897 DOI: 10.1021/acschemneuro.8b00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The conformational transition of prion protein (PrP) from a native form PrPC to a pathological isoform PrPSc is the main cause of a number of prion diseases in human and animals. Thus, understanding the molecular basis of conformational transition of PrP will be valuable for unveiling the etiology of PrP-related diseases. Here, to explore the potential misfolding mechanism of PrP under the acidic condition, which is known to promote PrP misfolding and trigger its aggregation, the conventional and accelerated molecular dynamics (MD) simulations combined with the Markov state model (MSM) analysis were performed. The conventional MD simulations reveal that, at an acidic pH, the globular domain of PrP is partially unfolded, particularly for the α2 C-terminus. Structural analysis of the key macrostates obtained by MSM indicates that the α2 C-terminus and the β2-α2 loop may serve as important sites for the pH-induced PrP misfolding. Meanwhile, the α1 may also participate in the pH-induced structural conversion by moving away from the α2-α3 subdomain. Notably, dynamical network analysis of the key metastable states indicates that the protonated H187 weakens the interactions between the α2 C-terminus, α1-β2 loop, and α2-α3 loop, leading these domains, especially the α2 C-terminus, to become unstable and to begin to misfold. Therefore, the α2 C-terminus plays a key role in the PrP misfolding process and serves as a potential site for drug targeting. Overall, our findings can deepen the understanding of the pathogenesis related to PrP and provide useful guidance for the future drug discovery.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Goluguri RR, Sen S, Udgaonkar J. Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. eLife 2019; 8:e44766. [PMID: 31025940 PMCID: PMC6516828 DOI: 10.7554/elife.44766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022] Open
Abstract
Protein aggregation appears to originate from partially unfolded conformations that are sampled through stochastic fluctuations of the native protein. It has been a challenge to characterize these fluctuations, under native like conditions. Here, the conformational dynamics of the full-length (23-231) mouse prion protein were studied under native conditions, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS). The slowest fluctuations could be associated with the folding of the unfolded state to an intermediate state, by the use of microsecond mixing experiments. The two faster fluctuations observed by PET-FCS, could be attributed to fluctuations within the native state ensemble. The addition of salt, which is known to initiate the aggregation of the protein, resulted in an enhancement in the time scale of fluctuations in the core of the protein. The results indicate the importance of native state dynamics in initiating the aggregation of proteins.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Sreemantee Sen
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Jayant Udgaonkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
- Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
15
|
Hwang S, Nicholson EM. Thermodynamic characterization for the denatured state of bovine prion protein and the BSE Associated variant E211K. Prion 2018; 12:301-309. [PMID: 30354921 PMCID: PMC6277186 DOI: 10.1080/19336896.2018.1534485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propagation of transmissible spongiform encephalopathies involves the conversion of cellular prion protein, PrPC, into a misfolded oligomeric form, PrPSc. The most common hereditary prion disease is a genetic form of Creutzfeldt-Jakob disease in humans, in which a mutation in the prion gene results in a glutamic acid to lysine substitution at position 200 (E200K) in PrP. In cattle, the analogous amino acid substitution is found at residue 211 (E211K) and has been associated with a case of bovine spongiform encephalopathy. Here, we have compared the secondary structure of E211K to that of wild type using circular dichroism and completed a thermodynamic analysis of the folding of recombinant wild type and E211K variants of the bovine prion protein. The secondary structure of the E211K variant was essentially indistinguishable from that of wild type. The thermodynamic stability of E211K substitution showed a slight destabilization relative to the wild type consistent with results reported for recombinant human prion protein and its mutant E200K. In addition, the E211K variant exhibits a similarly compact denatured state to that of wild type based upon similar m-value and change in heat capacity of unfolding for the proteins. Together these results indicate that residual structure in the denatured state of bPrP is present in both the wild type protein and BSE associated variant E211K. Given this observation, as well as folding similarities reported for other disease associated variants of PrP it is worth consideration that functional aspects of PrP conformation may play a role in the misfolding process.
Collapse
Affiliation(s)
- Soyoun Hwang
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| | - Eric M Nicholson
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| |
Collapse
|
16
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
17
|
Sabareesan AT, Udgaonkar JB. The G126V Mutation in the Mouse Prion Protein Hinders Nucleation-Dependent Fibril Formation by Slowing Initial Fibril Growth and by Increasing the Critical Concentration. Biochemistry 2017; 56:5931-5942. [PMID: 29045139 DOI: 10.1021/acs.biochem.7b00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The middle disordered hydrophobic region of the prion protein plays a critical role in conformational conversion of the protein, with pathogenic as well as protective mutations being localized to this region. In particular, it has been shown that the G127V mutation in this region of the human prion protein (huPrP) is protective against the spread of prion disease, but the mechanism of protection remains unknown. In this study, quantitative analyses of the kinetics of fibril formation by wild-type mouse prion protein (moPrP) and G126V moPrP (equivalent to G127V huPrP) reveal important differences: the critical concentration is higher, the lag phase is longer, and the initial effective rate constant of fibril growth is slower for the mutant variant. The study offers a simple biophysical explanation for why the G127V mutation in huPrP would be protective in humans: the ∼5-fold increase in critical concentration caused by the mutation likely results in the critical concentration (below which fibril formation cannot occur) being higher that the concentration of the protein present in and on cells in vivo.
Collapse
Affiliation(s)
- Ambadi Thody Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bengaluru 560065, India
| |
Collapse
|
18
|
Sabareesan AT, Singh J, Roy S, Udgaonkar JB, Mathew MK. The Pathogenic A116V Mutation Enhances Ion-Selective Channel Formation by Prion Protein in Membranes. Biophys J 2017; 110:1766-1776. [PMID: 27119637 DOI: 10.1016/j.bpj.2016.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders that afflict mammals. Misfolded and aggregated forms of the prion protein (PrP(Sc)) have been associated with many prion diseases. A transmembrane form of PrP favored by the pathogenic mutation A116V is associated with Gerstmann-Sträussler-Scheinker syndrome, but no accumulation of PrP(Sc) is detected. However, the role of the transmembrane form of PrP in pathological processes leading to neuronal death remains unclear. This study reports that the full-length mouse PrP (moPrP) significantly increases the permeability of living cells to K(+), and forms K(+)- and Ca(2+)-selective channels in lipid membranes. Importantly, the pathogenic mutation A116V greatly increases the channel-forming capability of moPrP. The channels thus formed are impermeable to sodium and chloride ions, and are blocked by blockers of voltage-gated ion channels. Hydrogen-deuterium exchange studies coupled with mass spectrometry (HDX-MS) show that upon interaction with lipid, the central hydrophobic region (109-132) of the protein is protected against exchange, making it a good candidate for inserting into the membrane and lining the channel. HDX-MS also shows a dramatic increase in the protein-lipid stoichiometry for A116V moPrP, providing a rationale for its increased channel-forming capability. The results suggest that ion channel formation may be a possible mechanism of PrP-mediated neurodegeneration by the transmembrane forms of PrP.
Collapse
Affiliation(s)
- Ambadi Thody Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Samrat Roy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; Biocon Bristol Myers Squibb Research Center, Bengaluru, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| | - M K Mathew
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
19
|
Moulick R, Udgaonkar JB. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization. J Mol Biol 2017; 429:886-899. [DOI: 10.1016/j.jmb.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
20
|
Chamachi NG, Chakrabarty S. Temperature-Induced Misfolding in Prion Protein: Evidence of Multiple Partially Disordered States Stabilized by Non-Native Hydrogen Bonds. Biochemistry 2017; 56:833-844. [DOI: 10.1021/acs.biochem.6b01042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neharika G. Chamachi
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
21
|
Sabareesan AT, Udgaonkar JB. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers. J Mol Biol 2016; 428:3935-3947. [PMID: 27545411 DOI: 10.1016/j.jmb.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Little is understood about how the intrinsically disordered N-terminal region (NTR) of the prion protein modulates its misfolding and aggregation, which lead to prion disease. In this study, two pathogenic mutations, G113V and A116V, in the palindromic region of the NTR are shown to have no effect on the structure, stability, or dynamics of native mouse prion protein (moPrP) but nevertheless accelerate misfolding and oligomerization. For wild-type moPrP, misfolding and oligomerization appear to occur concurrently, while for both mutant variants, oligomerization is shown to precede misfolding. Kinetic hydrogen-deuterium exchange-mass spectrometry experiments show that sequence segment 89-132 from the NTR becomes structured, albeit weakly, during the oligomerization of both mutant variants. Importantly, this structure formation occurs prior to structural conversion in the C-terminal domain and appears to be the reason that the formation of misfolded oligomers is accelerated by the pathogenic mutations.
Collapse
Affiliation(s)
- A T Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
22
|
Singh J, Udgaonkar JB. The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated. Biochemistry 2016; 55:459-69. [DOI: 10.1021/acs.biochem.5b01266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jogender Singh
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
23
|
Moulick R, Das R, Udgaonkar JB. Partially Unfolded Forms of the Prion Protein Populated under Misfolding-promoting Conditions: CHARACTERIZATION BY HYDROGEN EXCHANGE MASS SPECTROMETRY AND NMR. J Biol Chem 2015; 290:25227-40. [PMID: 26306043 DOI: 10.1074/jbc.m115.677575] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/16/2022] Open
Abstract
The susceptibility of the cellular prion protein (PrP(C)) to convert to an alternative misfolded conformation (PrP(Sc)), which is the key event in the pathogenesis of prion diseases, is indicative of a conformationally flexible native (N) state. In the present study, hydrogen-deuterium exchange (HDX) in conjunction with mass spectrometry and nuclear magnetic resonance spectroscopy were used for the structural and energetic characterization of the N state of the full-length mouse prion protein, moPrP(23-231), under conditions that favor misfolding. The kinetics of HDX of 34 backbone amide hydrogens in the N state were determined at pH 4. In contrast to the results of previous HDX studies on the human and Syrian hamster prion proteins at a higher pH, various segments of moPrP were found to undergo different extents of subglobal unfolding events at pH 4, a pH at which the protein is known to be primed to misfold to a β-rich conformation. No residual structure around the disulfide bond was observed for the unfolded state at pH 4. The N state of the prion protein was observed to be at equilibrium with at least two partially unfolded forms (PUFs). These PUFs, which are accessed by stochastic fluctuations of the N state, have altered surface area exposure relative to the N state. One of these PUFs resembles a conformation previously implicated to be an initial intermediate in the conversion of monomeric protein into misfolded oligomer at pH 4.
Collapse
Affiliation(s)
- Roumita Moulick
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Ranabir Das
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
24
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|