1
|
Fossépré M, Tuvi-Arad I, Beljonne D, Richeter S, Clément S, Surin M. Binding Mode Multiplicity and Multiscale Chirality in the Supramolecular Assembly of DNA and a π-Conjugated Polymer. Chemphyschem 2020; 21:2543-2552. [PMID: 32910539 DOI: 10.1002/cphc.202000630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Water-soluble π-conjugated polymers are increasingly considered for DNA biosensing. However, the conformational rearrangement, supramolecular organization and dynamics upon interaction with DNA have been overlooked, which prevents the rational design of such detection tools. To elucidate the binding of a cationic polythiophene (CPT) to DNA with atomistic resolution, we performed molecular simulations of their supramolecular assembly. Comparison of replicated simulations show a multiplicity of CPT binding geometries that contribute to the wrapping of CPT around DNA. The different binding geometries are stabilized by both electrostatic interactions between CPT lateral cations and DNA phosphodiesters and van der Waals interactions between the CPT backbone and the DNA grooves. Simulated circular dichroism (CD) spectra show that the induced CD signal stems from a conserved geometrical feature across the replicated simulations, i. e. the presence of segments of syn configurations between thiophene units along the CPT chain. At the macromolecular scale, we inspected the different shapes related to the CPT binding modes around the DNA through symmetry metrics. Altogether, molecular dynamics (MD) simulations, model Hamiltonian calculations of the CD spectra, and symmetry indices provide insights into the origin of induced chirality from the atomic to the macromolecular scale. Our multidisciplinary approach points out the hierarchical aspect of CPT chiral organization induced by DNA.
Collapse
Affiliation(s)
- Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 20 Place du Parc, Mons, 7000, Belgium
| | - Inbal Tuvi-Arad
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 20 Place du Parc, Mons, 7000, Belgium
| | | | | | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 20 Place du Parc, Mons, 7000, Belgium
| |
Collapse
|
2
|
Santiago G, de Salas F, Lucas MF, Monza E, Acebes S, Martinez ÁT, Camarero S, Guallar V. Computer-Aided Laccase Engineering: Toward Biological Oxidation of Arylamines. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01460] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gerard Santiago
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Felipe de Salas
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - M. Fátima Lucas
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
- Anaxomics Biotech, Balmes 89, E-08008 Barcelona, Spain
| | - Emanuele Monza
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Sandra Acebes
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Ángel T. Martinez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Susana Camarero
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Víctor Guallar
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
3
|
Cabeza de Vaca I, Lucas MF, Guallar V. New Monte Carlo Based Technique To Study DNA-Ligand Interactions. J Chem Theory Comput 2015; 11:5598-605. [PMID: 26642982 DOI: 10.1021/acs.jctc.5b00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a new all-atom Monte Carlo technique capable of performing quick and accurate DNA-ligand conformational sampling. In particular, and using the PELE software as a frame, we have introduced an additional force field, an implicit solvent, and an anisotropic network model to effectively map the DNA energy landscape. With these additions, we successfully generated DNA conformations for a test set composed of six DNA fragments of A-DNA and B-DNA. Moreover, trajectories generated for cisplatin and its hydrolysis products identified the best interacting compound and binding site, producing analogous results to microsecond molecular dynamics simulations. Furthermore, a combination of the Monte Carlo trajectories with Markov State Models produced noncovalent binding free energies in good agreement with the published molecular dynamics results, at a significantly lower computational cost. Overall our approach will allow a quick but accurate sampling of DNA-ligand interactions.
Collapse
Affiliation(s)
- Israel Cabeza de Vaca
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center , c/Jordi Girona 29, 08034 Barcelona, Barcelona, Spain
| | - Maria Fátima Lucas
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center , c/Jordi Girona 29, 08034 Barcelona, Barcelona, Spain.,Anaxomics Biotech, Balmes 89, 08008 Barcelona, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center , c/Jordi Girona 29, 08034 Barcelona, Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Khatti Z, Hashemianzadeh SM. Investigation of thermodynamic and structural properties of drug delivery system based on carbon nanotubes as a carboplatin drug carrier by molecular dynamics simulations. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0549-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Mehmood RK. Review of Cisplatin and oxaliplatin in current immunogenic and monoclonal antibody treatments. Oncol Rev 2014; 8:256. [PMID: 25992242 PMCID: PMC4419649 DOI: 10.4081/oncol.2014.256] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy agents initially transformed cancer treatment. However their effectiveness peaked as combined regimes showed little additional benefit in trials. New research frontiers developed with the discovery that conventional chemotherapy can induce immunological cell death by recruiting high mobility group box 1 protein through T-cell immunity. Simultaneously monoclonal antibody agents (not effective as monotherapies) showed good results in combination with conventional chemotherapy. Some of these combinations are currently in use and researchers hope to develop regimes which can offer substantial benefits. Several resistance mechanisms against platinum compounds are known, but more knowledge is still needed to gain a full understanding. It seems reasonable therefore to revisit the pharmacology of these agents, which may also lead to identify rational combinations with monoclonal agents providing regimes with less toxicity and better efficacy. This article reviews the pharmacology of cisplatin and oxaliplatin and explores their possible association with monoclonal antibody treatments.
Collapse
Affiliation(s)
- Rao Khalid Mehmood
- Department of Colorectal and General Surgery, University Board Hospital , Rhyl, North Wales, UK
| |
Collapse
|
6
|
Vargiu AV, Magistrato A. Atomistic-Level Portrayal of Drug-DNA Interplay: A History of Courtships and Meetings Revealed by Molecular Simulations. ChemMedChem 2014; 9:1966-81. [DOI: 10.1002/cmdc.201402203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/19/2022]
|
7
|
Gil VA, Guallar V. pyProCT: Automated Cluster Analysis for Structural Bioinformatics. J Chem Theory Comput 2014; 10:3236-43. [PMID: 26588293 DOI: 10.1021/ct500306s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cluster analysis is becoming a relevant tool in structural bioinformatics. It allows analyzing large conformational ensembles in order to extract features or diminish redundancy, or just as a first step for other methods. Unfortunately, the successfulness of this analysis strongly depends on the data set traits, the chosen algorithm, and its parameters, which can lead to poor or even erroneous results not easily detected. In order to overcome this problem, we have developed pyProCT, a Python open source cluster analysis toolkit specially designed to be used with ensembles of biomolecule conformations. pyProCT implements an automated protocol to choose the clustering algorithm and parameters that produce the best results for a particular data set. It offers different levels of customization according to users' expertise. Moreover, pyProCT has been designed as a collection of interchangeable libraries, making it easier to reuse it as part of other programs.
Collapse
Affiliation(s)
- Víctor A Gil
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
| | - Víctor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
8
|
Mehmood RK, Parker J, Ahmed S, Qasem E, Mohammed AA, Zeeshan M, Jehangir E. Review of Cisplatin and Oxaliplatin in Current Immunogenic and Monoclonal Antibodies Perspective. World J Oncol 2014; 5:97-108. [PMID: 29147386 PMCID: PMC5649811 DOI: 10.14740/wjon830w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
Platinum-based chemotherapy made a paradigm shift in the treatment of different cancers initially; however, the success of these agents may have reached the peak as researchers have tried different combination regimes in different trials without having major differences in the end results. New frontiers of research were opened up firstly with this discovery that conventional chemo-radiation therapy can induce immunological cell death by recruiting high-mobility group box 1 (HMGB1) protein which triggers the T cell immunity and secondly monoclonal antibodies agents which were regrettably not effective as “monotherapy”; however, the combination with conventional chemotherapy had demonstrated good results. Different monoclonal antibodies and conventional chemotherapeutic combination regimes are currently in use and researchers are trying different other combinations as well to glean the maximum benefits from them. Several strategies conferring resistance to platinum compounds have been identified, but there is still significant research required to achieve full understanding of these resistance mechanisms to overcome the ineffectiveness or toxicities of platinum compounds. It seems reasonable in the current perspective when conventional chemotherapeutic agents exhibited immunogenic cell death and they are currently in use with monoclonal antibodies to revisit the platinum agent’s pharmacology. This may discover new basis for combination chemotherapy with monoclonal antibodies which may improve the current cancer treatments by opening new vistas for newer combination regimes with less toxicity and better efficacy. In this article we review the pharmacologies of both cisplatin and oxaliplatin in the drug development perspectives and explore the possible association of these drugs with monoclonal antibodies.
Collapse
Affiliation(s)
- Rao Khalid Mehmood
- Betsi Cadwaladr University Health Board, Department of Surgery, Ysbyty Glan Clwyd, Rhyl, North Wales, LL18 5UJ, UK
| | - Jody Parker
- Betsi Cadwaladr University Health Board, Department of Surgery, Ysbyty Glan Clwyd, Rhyl, North Wales, LL18 5UJ, UK
| | - Shakil Ahmed
- The Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Eyas Qasem
- Betsi Cadwaladr University Health Board, Department of Surgery, Ysbyty Glan Clwyd, Rhyl, North Wales, LL18 5UJ, UK
| | - Ahmed A Mohammed
- Betsi Cadwaladr University Health Board, Department of Surgery, Ysbyty Glan Clwyd, Rhyl, North Wales, LL18 5UJ, UK
| | - Muhammed Zeeshan
- Acute University Hospitals NHS Trust, Cumberland Infirmary Carlisle, Newtown Rd, Carlisle, Cumbria, CA2 7HY, UK
| | - Ernest Jehangir
- Acute University Hospitals NHS Trust, Cumberland Infirmary Carlisle, Newtown Rd, Carlisle, Cumbria, CA2 7HY, UK
| |
Collapse
|