1
|
Low-temperature librations and dynamical transition in proteins at differing hydration levels. Biomol Concepts 2022; 13:81-88. [DOI: 10.1515/bmc-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hydration of water affects the dynamics and in turn the activity of biomacromolecules. We investigated the dependence of the librational oscillations and the dynamical transition on the hydrating conditions of two globular proteins with different structure and size, namely β-lactoglobulin (βLG) and human serum albumin (HSA), by spin-label electron paramagnetic resonance (EPR) in the temperature range of 120–270 K. The proteins were spin-labeled with 5-maleimide spin-label on free cysteins and prepared in the lyophilized state, at low (h = 0.12) and full (h = 2) hydration levels in buffer. The angular amplitudes of librations are small and almost temperature independent for both lyophilized proteins. Therefore, in these samples, the librational dynamics is restricted and the dynamical transition is absent. In the small and compact beta-structured βLG, the angular librational amplitudes increase with temperature and hydrating conditions, whereas hydration-independent librational oscillations whose amplitudes rise with temperature are recorded in the large and flexible alpha-structured HSA. Both βLG and HSA at low and fully hydration levels undergo the dynamical transition at about 230 K. The overall results indicate that protein librational dynamics is activated at the low hydration level h = 0.12 and highlight biophysical properties that are common to other biosamples at cryogenic temperatures.
Collapse
|
2
|
Lindemann WR, Evans ED, Mijalis AJ, Saouaf OM, Pentelute BL, Ortony JH. Quantifying residue-specific conformational dynamics of a highly reactive 29-mer peptide. Sci Rep 2020; 10:2597. [PMID: 32054898 PMCID: PMC7018720 DOI: 10.1038/s41598-020-59047-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding structural transitions within macromolecules remains an important challenge in biochemistry, with important implications for drug development and medicine. Insight into molecular behavior often requires residue-specific dynamics measurement at micromolar concentrations. We studied MP01-Gen4, a library peptide selected to rapidly undergo bioconjugation, by using electron paramagnetic resonance (EPR) to measure conformational dynamics. We mapped the dynamics of MP01-Gen4 with residue-specificity and identified the regions involved in a structural transformation related to the conjugation reaction. Upon reaction, the conformational dynamics of residues near the termini slow significantly more than central residues, indicating that the reaction induces a structural transition far from the reaction site. Arrhenius analysis demonstrates a nearly threefold decrease in the activation energy of conformational diffusion upon reaction (8.0 kBT to 3.4 kBT), which occurs across the entire peptide, independently of residue position. This novel approach to EPR spectral analysis provides insight into the positional extent of disorder and the nature of the energy landscape of a highly reactive, intrinsically disordered library peptide before and after conjugation.
Collapse
Affiliation(s)
- William R Lindemann
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States
| | - Ethan D Evans
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Alexander J Mijalis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Olivia M Saouaf
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California, 94305, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States.
| |
Collapse
|
3
|
Golysheva EA, Shevelev GY, Dzuba SA. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels. J Chem Phys 2018; 147:064501. [PMID: 28810753 DOI: 10.1063/1.4997035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, 〈x2〉, of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ∼100-150 K and at ∼170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy-a pulsed version of electron paramagnetic resonance-is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme. The anisotropic contribution to the rate of the two-pulse ESE decay, ΔW, is induced by spin relaxation appearing because of restricted orientational stochastic molecular motion; it is proportional to 〈α2〉τc, where 〈α2〉 is the mean-squared angle of reorientation of the nitroxide molecule around the equilibrium position and τc is the correlation time of reorientation. The ESE time window allows us to study motions with τc < 10-7 s. For glassy o-terphenyl, the 〈α2〉τc temperature dependence shows a transition near 240 K, which is in agreement with the literature data on 〈x2〉. For spin probes of essentially different size, the obtained data were found to be close, which evidences that motion is cooperative, involving a nanocluster of several neighboring molecules. For the dry lysozyme, the 〈α2〉τc values below 260 K were found to linearly depend on the temperature in the same way as it was observed in neutron scattering for 〈x2〉. As spin relaxation is influenced only by stochastic motion, the harmonic motions seen in ESE must be overdamped. In the hydrated lysozyme, ESE data show transitions near 130 K for all nitroxides, near 160 K for the probe located in the hydration layer, and near 180 K for the label in the protein interior. For this system, the two latter transitions are not observed in neutron scattering. The ESE-detected transitions are suggested to be related with water dynamics in the nearest hydration shell: with water glass transition near 130 K and with the onset of overall water molecular reorientations near 180 K; the disagreement with neutron scattering is ascribed to the larger time window for ESE-detected motions.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Georgiy Yu Shevelev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
4
|
Aloi E, Oranges M, Guzzi R, Bartucci R. Low-Temperature Dynamics of Chain-Labeled Lipids in Ester- and Ether-Linked Phosphatidylcholine Membranes. J Phys Chem B 2017; 121:9239-9246. [PMID: 28892381 DOI: 10.1021/acs.jpcb.7b07386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Continuous wave electron paramagnetic resonance spectroscopy and two-pulse echo detected spectra of chain-labeled lipids are used to study the dynamics of frozen lipid membranes over the temperature range 77-260 K. Bilayers of ester-linked dihexadecanoylphosphatidylcholine (DPPC) with noninterdigitated chains and ether-linked dihexadecyl phosphatidylcholine (DHPC) with interdigitated chains are considered. Rapid stochastic librations of small angular amplitude are found in both lipid matrices. In noninterdigitated DPPC bilayers, the mean-square angular amplitude, [Formula: see text], of the motion increases with temperature and it is larger close to the chain termini than close to the polar/apolar interface. In contrast, in interdigitated DHPC lamellae, [Formula: see text] is small and temperature and label-position independent at low temperature and increases steeply at high temperature. The rotational correlation time, τc, of librations lies in the subnanosecond range for DPPC and in the nanosecond range for DHPC. In all membrane samples, the temperature dependence of [Formula: see text] resembles that of the mean-square atomic displacement revealed by neutron scattering and a dynamical transition is detected in the range 210-240 K. The results highlight the librational oscillations and the glass-like behavior in bilayer and interdigitated lipid membranes.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| | - Maria Oranges
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| |
Collapse
|
5
|
Guzzi R, Bartucci R. Electron spin resonance of spin-labeled lipid assemblies and proteins. Arch Biochem Biophys 2015; 580:102-11. [PMID: 26116378 DOI: 10.1016/j.abb.2015.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/29/2023]
Abstract
Spin-label electron spin resonance (ESR) spectroscopy is a valuable means to study molecular mobility and interactions in biological systems. This paper deals with conventional, continuous wave ESR of nitroxide spin-labels at 9-GHz providing an introduction to the basic principles of the technique and applications to self-assembled lipid aggregates and proteins. Emphasis is given to segmental lipid chain order and rotational dynamics of lipid structures, environmental polarity of membranes and proteins, structure and conformational dynamics of proteins.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, University of Calabria, 87036 Rende (CS), Italy
| | - Rosa Bartucci
- Department of Physics, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
6
|
Guzzi R, Bartucci R, Esmann M, Marsh D. Lipid Librations at the Interface with the Na,K-ATPase. Biophys J 2015; 108:2825-32. [PMID: 26083922 DOI: 10.1016/j.bpj.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022] Open
Abstract
Transitions between conformational substates of membrane proteins can be driven by torsional librations in the protein that may be coupled to librational fluctuations of the lipid chains. Here, librational motion of spin-labeled lipid chains in membranous Na,K-ATPase is investigated by spin-echo electron paramagnetic resonance. Lipids at the protein interface are targeted by using negatively charged spin-labeled fatty acids that display selectivity of interaction with the Na,K-ATPase. Echo-detected electron paramagnetic resonance spectra from native membranes are corrected for the contribution from the bilayer regions of the membrane by using spectra from dispersions of the extracted membrane lipids. Lipid librations at the protein interface have a flat profile with chain position, whereas librational fluctuations of the bilayer lipids increase pronouncedly from C-9 onward, then flatten off toward the terminal methyl end of the chains. This difference is accounted for by increased torsional amplitude at the chain ends in bilayers, while the amplitude remains restricted throughout the chain at the protein interface with a limited lengthening in correlation time. The temperature dependence of chain librations at the protein interface strongly resembles that of the spin-labeled protein side chains, suggesting solvent-mediated transitions in the protein are driven by fluctuations in the lipid environment.
Collapse
Affiliation(s)
- Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Material Unit, University of Calabria, Ponte P. Bucci, Rende, Italy
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Material Unit, University of Calabria, Ponte P. Bucci, Rende, Italy
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|