1
|
Sae-Ueng U, Bhunchoth A, Phironrit N, Treetong A, Sapcharoenkun C, Chatchawankanphanich O, Leartsakulpanich U, Chitnumsub P. Thermoresponsive C22 phage stiffness modulates the phage infectivity. Sci Rep 2022; 12:13001. [PMID: 35906255 PMCID: PMC9338302 DOI: 10.1038/s41598-022-16795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages offer a sustainable alternative for controlling crop disease. However, the lack of knowledge on phage infection mechanisms makes phage-based biological control varying and ineffective. In this work, we interrogated the temperature dependence of the infection and thermo-responsive behavior of the C22 phage. This soilborne podovirus is capable of lysing Ralstonia solanacearum, causing bacterial wilt disease. We revealed that the C22 phage could better infect the pathogenic host cell when incubated at low temperatures (25, 30 °C) than at high temperatures (35, 40 °C). Measurement of the C22 phage stiffness revealed that the phage stiffness at low temperatures was 2–3 times larger than at high temperatures. In addition, the imaging results showed that more C22 phage particles were attached to the cell surface at low temperatures than at high temperatures, associating the phage stiffness and the phage attachment. The result suggests that the structure and stiffness modulation in response to temperature change improve infection, providing mechanistic insight into the C22 phage lytic cycle. Our study signifies the need to understand phage responses to the fluctuating environment for effective phage-based biocontrol implementation.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chaweewan Sapcharoenkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Direct structural evidence supporting a revolving mechanism in DNA packaging motors. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
3
|
Alaofi AL. Probing the flexibility of Zika virus envelope protein DIII epitopes using molecular dynamics simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1738424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zou A, Lee S, Li J, Zhou R. Retained Stability of the RNA Structure in DNA Packaging Motor with a Single Mg2+ Ion Bound at the Double Mg-Clamp Structure. J Phys Chem B 2020; 124:701-707. [DOI: 10.1021/acs.jpcb.9b06428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aodong Zou
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Sangyun Lee
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Jingyuan Li
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Cuervo A, Fàbrega-Ferrer M, Machón C, Conesa JJ, Fernández FJ, Pérez-Luque R, Pérez-Ruiz M, Pous J, Vega MC, Carrascosa JL, Coll M. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nat Commun 2019; 10:3746. [PMID: 31431626 PMCID: PMC6702177 DOI: 10.1038/s41467-019-11705-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
Double-stranded DNA bacteriophages package their genome at high pressure inside a procapsid through the portal, an oligomeric ring protein located at a unique capsid vertex. Once the DNA has been packaged, the tail components assemble on the portal to render the mature infective virion. The tail tightly seals the ejection conduit until infection, when its interaction with the host membrane triggers the opening of the channel and the viral genome is delivered to the host cell. Using high-resolution cryo-electron microscopy and X-ray crystallography, here we describe various structures of the T7 bacteriophage portal and fiber-less tail complex, which suggest a possible mechanism for DNA retention and ejection: a portal closed conformation temporarily retains the genome before the tail is assembled, whereas an open portal is found in the tail. Moreover, a fold including a seven-bladed β-propeller domain is described for the nozzle tail protein.
Collapse
Affiliation(s)
- Ana Cuervo
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Montserrat Fàbrega-Ferrer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Cristina Machón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - José Javier Conesa
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Francisco J Fernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Abvance Biotech srl, Ave. Reina Victoria 32, 28003, Madrid, Spain
| | - Rosa Pérez-Luque
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Mar Pérez-Ruiz
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - M Cristina Vega
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. ACS NANO 2019; 13:6207-6223. [PMID: 31067030 PMCID: PMC6595433 DOI: 10.1021/acsnano.8b08849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanomotors in nanotechnology are as important as engines in daily life. Many ATPases are nanoscale biomotors classified into three categories based on the motion mechanisms in transporting substrates: linear, rotating, and the recently discovered revolving motion. Most biomotors adopt a multisubunit ring-shaped structure that hydrolyzes ATP to generate force. How these biomotors control the motion direction and regulate the sequential action of their multiple subunits is intriguing. Many ATPases are hexameric with each monomer containing a conserved arginine finger. This review focuses on recent findings on how the arginine finger controls motion direction and coordinates adjacent subunit interactions in both revolving and rotating biomotors. Mechanisms of intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms. Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor fabrication in nanotechnology.
Collapse
Affiliation(s)
- Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
- E-mail:
| | - Dana Driver
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhengyi Zhao
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Zhen Zheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Chun Chan
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Xiaolin Cheng
- Center
for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy
and College of Medicine, Dorothy M. Davis Heart and Lung Research
Institute, Comprehensive Cancer Center and College of Pharmacy, Biophysics
Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
7
|
Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 2019; 570:257-261. [PMID: 31142842 PMCID: PMC6732574 DOI: 10.1038/s41586-019-1248-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Herpesviruses are enveloped viruses prevalent in the human population, responsible for a host of pathologies ranging from cold sores to birth defects and cancers. They are characterized by a highly pressurized, T (triangulation number) = 16 pseudo-icosahedral capsid encapsidating a tightly packed dsDNA genome1–3. A key process in the herpesvirus life cycle involves the recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package, and cleave concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion4,5. Though this process has been studied in dsDNA phages6–9—with which herpesviruses bear some similarities—a lack of high-resolution in situ structures of genome-packaging machinery has prevented the elucidation of how these multi-step reactions, which require close coordination among multiple actors, occur in an integrated environment. Thus, to better define the structural basis of genome packaging and organization in the prototypical herpesvirus, herpes simplex virus type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation methods to process cryoEM images of HSV-1 virions, enabling us to decouple and reconstruct hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we show in situ structures of the unique portal vertex, genomic termini, and ordered dsDNA coils in the capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular complex capping the portal vertex not observed in phages, indicative of adaptations in the DNA-packaging process specific to herpesviruses. Finally, our atomic models of portal vertex elements reveal how the five-fold-related capsid accommodates symmetry mismatch imparted by the dodecameric portal—long a mystery in icosahedral viruses—and inform possible DNA sequence-recognition and headful-sensing pathways involved in genome packaging. Our work represents the first fully symmetry-resolved structure of a portal vertex and first atomic model of a portal complex in a eukaryotic virus.
Collapse
|
8
|
Sharp KA, Lu XJ, Cingolani G, Harvey SC. DNA Conformational Changes Play a Force-Generating Role during Bacteriophage Genome Packaging. Biophys J 2019; 116:2172-2180. [PMID: 31103227 DOI: 10.1016/j.bpj.2019.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022] Open
Abstract
Motors that move DNA, or that move along DNA, play essential roles in DNA replication, transcription, recombination, and chromosome segregation. The mechanisms by which these DNA translocases operate remain largely unknown. Some double-stranded DNA (dsDNA) viruses use an ATP-dependent motor to drive DNA into preformed capsids. These include several human pathogens as well as dsDNA bacteriophages-viruses that infect bacteria. We previously proposed that DNA is not a passive substrate of bacteriophage packaging motors but is instead an active component of the machinery. We carried out computational studies on dsDNA in the channels of viral portal proteins, and they reveal DNA conformational changes consistent with that hypothesis. dsDNA becomes longer ("stretched") in regions of high negative electrostatic potential and shorter ("scrunched") in regions of high positive potential. These results suggest a mechanism that electrostatically couples the energy released by ATP hydrolysis to DNA translocation: The chemical cycle of ATP binding, hydrolysis, and product release drives a cycle of protein conformational changes. This produces changes in the electrostatic potential in the channel through the portal, and these drive cyclic changes in the length of dsDNA as the phosphate groups respond to the protein's electrostatic potential. The DNA motions are captured by a coordinated protein-DNA grip-and-release cycle to produce DNA translocation. In short, the ATPase, portal, and dsDNA work synergistically to promote genome packaging.
Collapse
Affiliation(s)
- Kim A Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Prevelige PE, Cortines JR. Phage assembly and the special role of the portal protein. Curr Opin Virol 2018; 31:66-73. [PMID: 30274853 DOI: 10.1016/j.coviro.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/16/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
Abstract
Virus infections are ultimately dependent on a successful viral genome delivery to the host cell. The bacteriophage family Caudovirales evolved specialized machinery that fulfills this function: the portal proteins complex. The complexes are arranged as dodecameric rings and are a structural part of capsids incorporated at a five-fold vertex. They are involved in crucial aspects of viral replication, such as virion assembly, DNA packaging and DNA delivery. This review focuses on the organization and the mechanism through which these portal complexes achieve viral genome delivery and their similarities to other viral portal complexes.
Collapse
Affiliation(s)
- Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, 35294, United States
| | - Juliana R Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
10
|
Kumar R, Grubmüller H. Phi29 Connector-DNA Interactions Govern DNA Crunching and Rotation, Supporting the Check-Valve Model. Biophys J 2016; 110:455-469. [PMID: 26789768 PMCID: PMC4724654 DOI: 10.1016/j.bpj.2015.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022] Open
Abstract
During replication of the ϕ29 bacteriophage inside a bacterial host cell, a DNA packaging motor transports the viral DNA into the procapsid against a pressure difference of up to 40 ± 20 atm. Several models have been proposed for the underlying molecular mechanism. Here we have used molecular dynamics simulations to examine the role of the connector part of the motor, and specifically the one-way revolution and the push-roll model. We have focused at the structure and intermolecular interactions between the DNA and the connector, for which a near-complete structure is available. The connector is found to induce considerable DNA deformations with respect to its canonical B-form. We further assessed by force-probe simulations to which extent the connector is able to prevent DNA leakage and found that the connector can act as a partial one-way valve by a check-valve mechanism via its mobile loops. Analysis of the geometry, flexibility, and energetics of channel lysine residues suggested that this arrangement of residues is incompatible with the observed DNA packaging step-size of ∼2.5 bp, such that the step-size is probably determined by the other components of the motor. Previously proposed DNA revolution and rolling motions inside the connector channel are both found implausible due to structural entanglement between the DNA and connector loops that have not been resolved in the crystal structure. Rather, in the simulations, the connector facilitates minor DNA rotation during the packaging process compatible with recent optical-tweezers experiments. Combined with the available experimental data, our simulation results suggest that the connector acts as a check-valve that prevents DNA leakage and induces DNA compression and rotation during DNA packaging.
Collapse
Affiliation(s)
- Rajendra Kumar
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
11
|
An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor. Mol Cell Biol 2016; 36:2514-23. [PMID: 27457616 PMCID: PMC5021374 DOI: 10.1128/mcb.00142-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/30/2016] [Indexed: 11/30/2022] Open
Abstract
Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation and virion assembly assays indicated that the ATPase was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA translocation, but the addition of monomer could restore the activity, suggesting that the hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA affinity. Taking these observations together, we concluded that the arginine finger regulates sequential action of the motor ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of asymmetrical hexameric organization is supported by structural evidence of many other ATPase systems showing the presence of one noncovalent dimer and four monomer subunits. All of these provide clues for why the asymmetrical hexameric ATPase gp16 of ϕ29 was previously reported as a pentameric configuration by cryo-electron microscopy (cryo-EM) since the contact by the arginine finger renders two adjacent ATPase subunits closer than other subunits. Thus, the asymmetrical hexamer would appear as a pentamer by cryo-EM, a technology that acquires the average of many images.
Collapse
|
12
|
Waters JT, Kim HD, Gumbart JC, Lu XJ, Harvey SC. DNA Scrunching in the Packaging of Viral Genomes. J Phys Chem B 2016; 120:6200-7. [PMID: 27214211 DOI: 10.1021/acs.jpcb.6b02149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The motors that drive double-stranded DNA (dsDNA) genomes into viral capsids are among the strongest of all biological motors for which forces have been measured, but it is not known how they generate force. We previously proposed that the DNA is not a passive substrate but that it plays an active role in force generation. This "scrunchworm hypothesis" holds that the motor proteins repeatedly dehydrate and rehydrate the DNA, which then undergoes cyclic shortening and lengthening motions. These are captured by a coupled protein-DNA grip-and-release cycle to rectify the motion and translocate the DNA into the capsid. In this study, we examined the interactions of dsDNA with the dodecameric connector protein of bacteriophage ϕ29, using molecular dynamics simulations on four different DNA sequences, starting from two different conformations (A-DNA and B-DNA). In all four simulations starting with the protein equilibrated with A-DNA in the channel, we observed transitions to a common, metastable, highly scrunched conformation, designated A*. This conformation is very similar to one recently reported by Kumar and Grubmüller in much longer MD simulations on B-DNA docked into the ϕ29 connector. These results are significant for four reasons. First, the scrunched conformations occur spontaneously, without requiring lever-like protein motions often believed to be necessary for DNA translocation. Second, the transition takes place within the connector, providing the location of the putative "dehydrator". Third, the protein has more contacts with one strand of the DNA than with the other; the former was identified in single-molecule laser tweezer experiments as the "load-bearing strand". Finally, the spontaneity of the DNA-protein interaction suggests that it may play a role in the initial docking of DNA in motors like that of T4 that can load and package any sequence.
Collapse
Affiliation(s)
- James T Waters
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Bauer DW, Evilevitch A. Influence of Internal DNA Pressure on Stability and Infectivity of Phage λ. J Mol Biol 2015; 427:3189-3200. [PMID: 26254570 DOI: 10.1016/j.jmb.2015.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
Abstract
Viruses must remain infectious while in harsh extracellular environments. An important aspect of viral particle stability for double-stranded DNA viruses is the energetically unfavorable state of the tightly confined DNA chain within the virus capsid creating pressures of tens of atmospheres. Here, we study the influence of internal genome pressure on the thermal stability of viral particles. Using differential scanning calorimetry to monitor genome loss upon heating, we find that internal pressure destabilizes the virion, resulting in a smaller activation energy barrier to trigger DNA release. These experiments are complemented by plaque assay and electron microscopy measurements to determine the influence of intra-capsid DNA pressure on the rates of viral infectivity loss. At higher temperatures (65-75°C), failure to retain the packaged genome is the dominant mechanism of viral inactivation. Conversely, at lower temperatures (40-55°C), a separate inactivation mechanism dominates, which results in non-infectious particles that still retain their packaged DNA. Most significantly, both mechanisms of infectivity loss are directly influenced by internal DNA pressure, with higher pressure resulting in a more rapid rate of inactivation at all temperatures.
Collapse
Affiliation(s)
- D W Bauer
- Carnegie Mellon University Department of Physics, Pittsburgh, PA 15213, USA
| | - A Evilevitch
- Carnegie Mellon University Department of Physics, Pittsburgh, PA 15213, USA; Lund University Department of Biochemistry and Structural Biology, 221 00 Lund, Sweden.
| |
Collapse
|
14
|
Exploring the Balance between DNA Pressure and Capsid Stability in Herpesviruses and Phages. J Virol 2015; 89:9288-98. [PMID: 26136570 DOI: 10.1128/jvi.01172-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have recently shown in both herpesviruses and phages that packaged viral DNA creates a pressure of tens of atmospheres pushing against the interior capsid wall. For the first time, using differential scanning microcalorimetry, we directly measured the energy powering the release of pressurized DNA from the capsid. Furthermore, using a new calorimetric assay to accurately determine the temperature inducing DNA release, we found a direct influence of internal DNA pressure on the stability of the viral particle. We show that the balance of forces between the DNA pressure and capsid strength, required for DNA retention between rounds of infection, is conserved between evolutionarily diverse bacterial viruses (phages λ and P22), as well as a eukaryotic virus, human herpes simplex 1 (HSV-1). Our data also suggest that the portal vertex in these viruses is the weakest point in the overall capsid structure and presents the Achilles heel of the virus's stability. Comparison between these viral systems shows that viruses with higher DNA packing density (resulting in higher capsid pressure) have inherently stronger capsid structures, preventing spontaneous genome release prior to infection. This force balance is of key importance for viral survival and replication. Investigating the ways to disrupt this balance can lead to development of new mutation-resistant antivirals. IMPORTANCE A virus can generally be described as a nucleic acid genome contained within a protective protein shell, called the capsid. For many double-stranded DNA viruses, confinement of the large DNA molecule within the small protein capsid results in an energetically stressed DNA state exerting tens of atmospheres of pressures on the inner capsid wall. We show that stability of viral particles (which directly relates to infectivity) is strongly influenced by the state of the packaged genome. Using scanning calorimetry on a bacterial virus (phage λ) as an experimental model system, we investigated the thermodynamics of genome release associated with destabilizing the viral particle. Furthermore, we compare the influence of tight genome confinement on the relative stability for diverse bacterial and eukaryotic viruses. These comparisons reveal an evolutionarily conserved force balance between the capsid stability and the density of the packaged genome.
Collapse
|
15
|
Crozat E, Rousseau P, Fournes F, Cornet F. The FtsK family of DNA translocases finds the ends of circles. J Mol Microbiol Biotechnol 2015; 24:396-408. [PMID: 25732341 DOI: 10.1159/000369213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A global view of bacterial chromosome choreography during the cell cycle is emerging, highlighting as a next challenge the description of the molecular mechanisms and factors involved. Here, we review one such factor, the FtsK family of DNA translocases. FtsK is a powerful and fast translocase that reads chromosome polarity. It couples segregation of the chromosome with cell division and controls the last steps of segregation in time and space. The second model protein of the family SpoIIIE acts in the transfer of the Bacillus subtilis chromosome during sporulation. This review focuses on the molecular mechanisms used by FtsK and SpoIIIE to segregate chromosomes with emphasis on the latest advances and open questions.
Collapse
Affiliation(s)
- Estelle Crozat
- Laboratoire de Microbiologie et de Génétique Moléculaires, CNRS, and Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
16
|
Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 2015; 32:853-72. [PMID: 24913057 DOI: 10.1016/j.biotechadv.2014.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/15/2022]
Abstract
Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantageous for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy.
Collapse
|
17
|
Guo P. Biophysical studies reveal new evidence for one-way revolution mechanism of bacteriophage ϕ29 DNA packaging motor. Biophys J 2014; 106:1837-8. [PMID: 24806913 DOI: 10.1016/j.bpj.2014.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and College of Pharmacy, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
18
|
Guo P, Grainge I, Zhao Z, Vieweger M. Two classes of nucleic acid translocation motors: rotation and revolution without rotation. Cell Biosci 2014; 4:54. [PMID: 25276341 PMCID: PMC4177589 DOI: 10.1186/2045-3701-4-54] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022] Open
Abstract
Biomotors are extensively involved in biological processes including cell mitosis, bacterial binary fission, DNA replication, DNA repair, homologous recombination, Holliday junction resolution, RNA transcription, and viral genome packaging. Traditionally, they were classified into two categories including linear and rotation motors. In 2013, a third class of motor by revolution mechanism without rotation was discovered. In this issue of “Structure and mechanisms of nanomotors in the cells”, four comprehensive reviews are published to address the latest advancements of the structure and motion mechanism of a variety of biomotors in archaea, animal viruses, bacteria, and bacteriophages.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, Lexington, KY USA ; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
| | - Ian Grainge
- Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308 Australia
| | - Zhengyi Zhao
- Nanobiotechnology Center, Markey Cancer Center, Lexington, KY USA ; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
| | - Mario Vieweger
- Nanobiotechnology Center, Markey Cancer Center, Lexington, KY USA ; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
19
|
Wolfe A, Phipps K, Weitao T. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions. Cell Biosci 2014; 4:31. [PMID: 24995125 PMCID: PMC4080785 DOI: 10.1186/2045-3701-4-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 01/15/2023] Open
Abstract
DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.
Collapse
Affiliation(s)
- Annie Wolfe
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Kara Phipps
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| |
Collapse
|
20
|
Han W, Shen Y, She Q. Nanobiomotors of archaeal DNA repair machineries: current research status and application potential. Cell Biosci 2014; 4:32. [PMID: 24995126 PMCID: PMC4080772 DOI: 10.1186/2045-3701-4-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
Nanobiomotors perform various important functions in the cell, and they also emerge as potential vehicle for drug delivery. These proteins employ conserved ATPase domains to convert chemical energy to mechanical work and motion. Several archaeal nucleic acid nanobiomotors, such as DNA helicases that unwind double-stranded DNA molecules during DNA damage repair, have been characterized in details. XPB, XPD and Hjm are SF2 family helicases, each of which employs two ATPase domains for ATP binding and hydrolysis to drive DNA unwinding. They also carry additional specific domains for substrate binding and regulation. Another helicase, HerA, forms a hexameric ring that may act as a DNA-pumping enzyme at the end processing of double-stranded DNA breaks. Common for all these nanobiomotors is that they contain ATPase domain that adopts RecA fold structure. This structure is characteristic for RecA/RadA family proteins and has been studied in great details. Here we review the structural analyses of these archaeal nucleic acid biomotors and the molecular mechanisms of how ATP binding and hydrolysis promote the conformation change that drives mechanical motion. The application potential of archaeal nanobiomotors in drug delivery has been discussed.
Collapse
Affiliation(s)
- Wenyuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China ; Archaeal Centre, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Qunxin She
- Archaeal Centre, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| |
Collapse
|