1
|
Adam S, Wiebeler C, Schapiro I. Structural Factors Determining the Absorption Spectrum of Channelrhodopsins: A Case Study of the Chimera C1C2. J Chem Theory Comput 2021; 17:6302-6313. [PMID: 34255519 DOI: 10.1021/acs.jctc.1c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Channelrhodopsins are photosensitive proteins that trigger flagella motion in single-cell algae and have been successfully utilized in optogenetic applications. In optogenetics, light is used to activate neural cells in living organisms, which can be achieved by exploiting the ion channel signaling of channelrhodopsins. Tailoring channelrhodopsins for such applications includes the tuning of the absorption maximum. In order to establish rational design and to obtain a desired spectral shift, a basic understanding of the absorption spectrum is required. We have studied the chimera C1C2 as a representative of this protein family and the first member with an available crystal structure. For this purpose, we sampled the conformations of C1C2 using quantum mechanical/molecular mechanical molecular dynamics and subjected the resulting snapshots of the trajectory to excitation energy calculations using ADC(2) and simplified time-dependent density functional theory. In contrast to previous reports, we found that different hydrogen-bonding networks-involving the retinal protonated Schiff base, the putative counterions E162 and D292, and water molecules-had only a small impact on the absorption spectrum. However, in the case of deprotonated E162, increasing the distance to the Schiff base hydrogen-bonding partner led to a systematic blue shift. The β-ionone ring rotation was identified as another important contributor. Yet the most important factors were found to be the bond length alternation and bond order alternation that were linearly correlated to the absorption maximum by up to 62 and 82%, respectively. We ascribe this novel insight into the structural basis of the absorption spectrum to our enhanced protein setup that includes membrane embedding as well as long and extensive sampling.
Collapse
Affiliation(s)
- Suliman Adam
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Structure-Function Relationship of Channelrhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:35-53. [PMID: 33398806 DOI: 10.1007/978-981-15-8763-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ion-translocating rhodopsins, especially channelrhodopsins (ChRs), have attracted broad attention as a powerful tool to modulate the membrane potential of cells with light (optogenetics). Because of recent biophysical, spectroscopic, and computational studies, including the structural determination of cation and anion ChRs, our understanding of the molecular mechanism underlying light-gated ion conduction has been greatly advanced. In this chapter, I first describe the background of rhodopsin family proteins including ChR, and how the optogenetics technology has been established from the discovery of first ChR in 2002. I later introduce the recent findings of the structure-function relationship of ChR by comparing the crystal structures of cation and anion ChRs. I further discuss the future goal in the fields of ChR research and optogenetic tool development.
Collapse
|
3
|
Kaufmann JCD, Krause BS, Adam S, Ritter E, Schapiro I, Hegemann P, Bartl FJ. Modulation of Light Energy Transfer from Chromophore to Protein in the Channelrhodopsin ReaChR. Biophys J 2020; 119:705-716. [PMID: 32697975 DOI: 10.1016/j.bpj.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022] Open
Abstract
The function of photoreceptors relies on efficient transfer of absorbed light energy from the chromophore to the protein to drive conformational changes that ultimately generate an output signal. In retinal-binding proteins, mainly two mechanisms exist to store the photon energy after photoisomerization: 1) conformational distortion of the prosthetic group retinal, and 2) charge separation between the protonated retinal Schiff base (RSBH+) and its counterion complex. Accordingly, energy transfer to the protein is achieved by chromophore relaxation and/or reduction of the charge separation in the RSBH+-counterion complex. Combining FTIR and UV-Vis spectroscopy along with molecular dynamics simulations, we show here for the widely used, red-activatable Volvox carteri channelrhodopsin-1 derivate ReaChR that energy storage and transfer into the protein depends on the protonation state of glutamic acid E163 (Ci1), one of the counterions of the RSBH+. Ci1 retains a pKa of 7.6 so that both its protonated and deprotonated forms equilibrate at physiological conditions. Protonation of Ci1 leads to a rigid hydrogen-bonding network in the active-site region. This stabilizes the distorted conformation of the retinal after photoactivation and decelerates energy transfer into the protein by impairing the release of the strain energy. In contrast, with deprotonated Ci1 or removal of the Ci1 glutamate side chain, the hydrogen-bonded system is less rigid, and energy transfer by chromophore relaxation is accelerated. Based on the hydrogen out-of-plane (HOOP) band decay kinetics, we determined the activation energy for these processes in dependence of the Ci1 protonation state.
Collapse
Affiliation(s)
- Joel C D Kaufmann
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité Berlin, Berlin, Germany
| | - Benjamin S Krause
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research at the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eglof Ritter
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany; Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research at the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franz J Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Oda K, Vierock J, Oishi S, Rodriguez-Rozada S, Taniguchi R, Yamashita K, Wiegert JS, Nishizawa T, Hegemann P, Nureki O. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat Commun 2018; 9:3949. [PMID: 30258177 PMCID: PMC6158191 DOI: 10.1038/s41467-018-06421-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Channelrhodopsins are light-activated ion channels that mediate cation permeation across cell membranes upon light absorption. Red-light-activated channelrhodopsins are of particular interest, because red light penetrates deeper into biological tissues and also enables dual-color experiments in combination with blue-light-activated optogenetic tools. Here we report the crystal structure of the most red-shifted channelrhodopsin from the algae Chlamydomonas noctigama, Chrimson, at 2.6 Å resolution. Chrimson resembles prokaryotic proton pumps in the retinal binding pocket, while sharing similarity with other channelrhodopsins in the ion-conducting pore. Concomitant mutation analysis identified the structural features that are responsible for Chrimson’s red light sensitivity; namely, the protonation of the counterion for the retinal Schiff base, and the polar residue distribution and rigidity of the retinal binding pocket. Based on these mechanistic insights, we engineered ChrimsonSA, a mutant with a maximum activation wavelength red-shifted beyond 605 nm and accelerated closing kinetics. Channelrhodopsins are light-activated ion channels that mediate cation permeation across cell membranes upon light absorption. Here, the authors report the crystal structure of the most red-shifted channelrhodopsin from the algae Chlamydomonas noctigama at 2.6 Å resolution.
Collapse
Affiliation(s)
- Kazumasa Oda
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo, 113-0034, Japan
| | - Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Satomi Oishi
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo, 113-0034, Japan
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Reiya Taniguchi
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo, 113-0034, Japan
| | | | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Tomohiro Nishizawa
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo, 113-0034, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan.
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Osamu Nureki
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo, 113-0034, Japan.
| |
Collapse
|
5
|
Adam S, Bondar AN. Mechanism by which water and protein electrostatic interactions control proton transfer at the active site of channelrhodopsin. PLoS One 2018; 13:e0201298. [PMID: 30086158 PMCID: PMC6080761 DOI: 10.1371/journal.pone.0201298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Channelrhodopsins are light-sensitive ion channels whose reaction cycles involve conformation-coupled transfer of protons. Understanding how channelrhodopsins work is important for applications in optogenetics, where light activation of these proteins triggers changes in the transmembrane potential across excitable membranes. A fundamental open question is how the protein environment ensures that unproductive proton transfer from the retinal Schiff base to the nearby carboxylate counterion is avoided in the resting state of the channel. To address this question, we performed combined quantum mechanical/molecular mechanical proton transfer calculations with explicit treatment of the surrounding lipid membrane. The free energy profiles computed for proton transfer to the counterion, either via a direct jump or mediated by a water molecule, demonstrate that, when retinal is all-trans, water and protein electrostatic interactions largely favour the protonated retinal Schiff base state. We identified a conserved lysine group as an essential structural element for the proton transfer energetics in channelrhodopsins.
Collapse
Affiliation(s)
- Suliman Adam
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| |
Collapse
|
6
|
Vierock J, Grimm C, Nitzan N, Hegemann P. Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci Rep 2017; 7:9928. [PMID: 28855540 PMCID: PMC5577340 DOI: 10.1038/s41598-017-09600-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Channelrhodopsins are light-gated ion channels of green algae used for the precise temporal and spatial control of transmembrane ion fluxes. The channelrhodopsin Chrimson from Chlamydomonas noctigama allows unprecedented deep tissue penetration due to peak absorption at 590 nm. We demonstrate by electrophysiological recordings and imaging techniques that Chrimson is highly proton selective causing intracellular acidification in HEK cells that is responsible for slow photocurrent decline during prolonged illumination. We localized molecular determinants of both high proton selectivity and red light activation to the extracellular pore. Whereas exchange of Glu143 only drops proton conductance and generates an operational Na-channel with 590 nm activation, exchange of Glu139 in addition increased the open state lifetime and shifted the absorption hypsochromic by 70 nm. In conjunction with Glu300 in the center and Glu124 and Glu125 at the intracellular end of the pore, Glu139 contributes to a delocalized activation gate and stabilizes by long-range interaction counterion configuration involving protonation of Glu165 that we identified as a key determinant of the large opsin shift in Chrimson.
Collapse
Affiliation(s)
- Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Christiane Grimm
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Noam Nitzan
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
7
|
Kaufmann JCD, Krause BS, Grimm C, Ritter E, Hegemann P, Bartl FJ. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function. J Biol Chem 2017; 292:14205-14216. [PMID: 28659342 PMCID: PMC5572910 DOI: 10.1074/jbc.m117.779629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified Volvox carteri ChR1 red-activatable channelrhodopsin ("ReaChR," λmax = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons versus cations, such as Na+, K+, and Ca2+ (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu130 (Glu90 in Chlamydomonas reinhardtii (Cr) ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp293 (Asp253 in CrChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp196 (Asp156 in CrChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15-syn-retinal at the expense of 15-anti, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15-anti species, whereas 15-syn species contribute only to the stationary current.
Collapse
Affiliation(s)
- Joel C D Kaufmann
- From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,.
| | | | | | | | | | - Franz J Bartl
- From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,; Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
| |
Collapse
|
8
|
Urmann D, Lorenz C, Linker SM, Braun M, Wachtveitl J, Bamann C. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson. Photochem Photobiol 2017; 93:782-795. [DOI: 10.1111/php.12741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- David Urmann
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Charlotte Lorenz
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Stephanie M. Linker
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Christian Bamann
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| |
Collapse
|
9
|
Yi A, Mamaeva N, Li H, Spudich JL, Rothschild KJ. Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base. Biochemistry 2016; 55:2371-80. [PMID: 27039989 DOI: 10.1021/acs.biochem.6b00104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optogenetics relies on the expression of specific microbial rhodopsins in the neuronal plasma membrane. Most notably, this includes channelrhodopsins, which when heterologously expressed in neurons function as light-gated cation channels. Recently, a new class of microbial rhodopsins, termed anion channel rhodopsins (ACRs), has been discovered. These proteins function as efficient light-activated channels strictly selective for anions. They exclude the flow of protons and other cations and cause hyperpolarization of the membrane potential in neurons by allowing the inward flow of chloride ions. In this study, confocal near-infrared resonance Raman spectroscopy (RRS) along with hydrogen/deuterium exchange, retinal analogue substitution, and site-directed mutagenesis were used to study the retinal structure as well as its interactions with the protein in the unphotolyzed state of an ACR from Guillardia theta (GtACR1). These measurements reveal that (i) the retinal chromophore exists as an all-trans configuration with a protonated Schiff base (PSB) very similar to that of bacteriorhodopsin (BR), (ii) the chromophore RRS spectrum is insensitive to changes in pH from 3 to 11, whereas above this pH the Schiff base (SB) is deprotonated, (iii) when Ser97, the homologue to Asp85 in BR, is replaced with a Glu, it remains in a neutral form (i.e., as a carboxylic acid) but is deprotonated at higher pH to form a blue-shifted species, (iv) Asp234, the homologue of the protonated retinylidene SB counterion Asp212 in BR, does not serve as the primary counteranion for the protonated SB, and (v) substitution of Glu68 with an Gln increases the pH at which SB deprotonation is observed. These results suggest that Glu68 and Asp234 located near the SB exist in a neutral state in unphotolyzed GtACR1 and indicate that other unidentified negative charges stabilize the protonated state of the GtACR1 SB.
Collapse
Affiliation(s)
- Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Abstract
Anion channelrhodopsins (ACRs) are a class of light-gated channels recently identified in cryptophyte algae that provide unprecedented fast and powerful hyperpolarizing tools for optogenetics. Analysis of photocurrents generated by Guillardia theta ACR 1 (GtACR1) and its mutants in response to laser flashes showed that GtACR1 gating comprises two separate mechanisms with opposite dependencies on the membrane voltage and pH and involving different amino acid residues. The first mechanism, characterized by slow opening and fast closing of the channel, is regulated by Glu-68. Neutralization of this residue (the E68Q mutation) specifically suppressed this first mechanism, but did not eliminate it completely at high pH. Our data indicate the involvement of another, yet-unidentified pH-sensitive group X. Introducing a positive charge at the Glu-68 site (the E68R mutation) inverted the channel gating so that it was open in the dark and closed in the light, without altering its ion selectivity. The second mechanism, characterized by fast opening and slow closing of the channel, was not substantially affected by the E68Q mutation, but was controlled by Cys-102. The C102A mutation reduced the rate of channel closing by the second mechanism by ∼100-fold, whereas it had only a twofold effect on the rate of the first. The results show that anion conductance by ACRs has a fundamentally different structural basis than the relatively well studied conductance by cation channelrhodopsins (CCRs), not attributable to simply a modification of the CCR selectivity filter.
Collapse
|
11
|
Ogren JI, Yi A, Mamaev S, Li H, Spudich JL, Rothschild KJ. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis. J Biol Chem 2015; 290:12719-30. [PMID: 25802337 DOI: 10.1074/jbc.m114.634840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs.
Collapse
Affiliation(s)
- John I Ogren
- From the Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215 and
| | - Adrian Yi
- From the Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215 and
| | - Sergey Mamaev
- From the Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215 and
| | - Hai Li
- the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas 77030
| | - John L Spudich
- the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas 77030
| | - Kenneth J Rothschild
- From the Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215 and
| |
Collapse
|
12
|
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae. Biochemistry 2014; 54:377-88. [PMID: 25469620 PMCID: PMC4303311 DOI: 10.1021/bi501243y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Channelrhodopsins
(ChRs) from green flagellate algae function as
light-gated ion channels when expressed heterologously in mammalian
cells. Considerable interest has focused on understanding the molecular
mechanisms of ChRs to bioengineer their properties for specific optogenetic
applications such as elucidating the function of specific neurons
in brain circuits. While most studies have used channelrhodopsin-2
from Chlamydomonas reinhardtii (CrChR2), in this work low-temperature Fourier transform infrared-difference
spectroscopy is applied to study the conformational changes occurring
during the primary phototransition of the red-shifted ChR1 from Chlamydomonas augustae (CaChR1). Substitution
with isotope-labeled retinals or the retinal analogue A2, site-directed
mutagenesis, hydrogen–deuterium exchange, and H218O exchange were used to assign bands to the retinal
chromophore, protein, and internal water molecules. The primary phototransition
of CaChR1 at 80 K involves, in contrast to that of CrChR2, almost exclusively an all-trans to 13-cis isomerization of the retinal chromophore,
as in the primary phototransition of bacteriorhodopsin (BR). In addition,
significant differences are found for structural changes of the protein
and internal water(s) compared to those of CrChR2,
including the response of several Asp/Glu residues to retinal isomerization.
A negative amide II band is identified in the retinal ethylenic stretch
region of CaChR1, which reflects along with amide
I bands alterations in protein backbone structure early in the photocycle.
A decrease in the hydrogen bond strength of a weakly hydrogen bonded
internal water is detected in both CaChR1 and CrChR2, but the bands are much broader in CrChR2, indicating a more heterogeneous environment. Mutations involving
residues Glu169 and Asp299 (homologues of the Asp85 and Asp212 Schiff
base counterions, respectively, in BR) lead to the conclusion that
Asp299 is protonated during P1 formation and suggest that these residues
interact through a strong hydrogen bond that facilitates the transfer
of a proton from Glu169.
Collapse
Affiliation(s)
- John I Ogren
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ. Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. Biochemistry 2014; 53:3961-70. [PMID: 24869998 PMCID: PMC4072394 DOI: 10.1021/bi500445c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Channelrhodopsins (ChRs), which form
a distinct branch of the microbial
rhodopsin family, control phototaxis in green algae. Because ChRs
can be expressed and function in neuronal membranes as light-gated
cation channels, they have rapidly become an important optogenetic
tool in neurobiology. While channelrhodopsin-2 from the unicellular
alga Chlamydomonas reinhardtii (CrChR2) is the most commonly used and extensively studied optogenetic
ChR, little is known about the properties of the diverse group of
other ChRs. In this study, near-infrared confocal resonance Raman
spectroscopy along with hydrogen–deuterium exchange and site-directed
mutagenesis were used to study the structure of red-shifted ChR1 from Chlamydomonas augustae (CaChR1). These
measurements reveal that (i) CaChR1 has an all-trans-retinal structure similar to those of the light-driven
proton pump bacteriorhodopsin (BR) and sensory rhodopsin II but different
from that of the mixed retinal composition of CrChR2,
(ii) lowering the pH from 7 to 2 or substituting neutral residues
for Glu169 or Asp299 does not significantly shift the ethylenic stretch
frequency more than 1–2 cm–1 in contrast
to BR in which a downshift of 7–9 cm–1 occurs
reflecting neutralization of the Asp85 counterion, and (iii) the CaChR1 protonated Schiff base (SB) has stronger hydrogen
bonding than BR. A model is proposed to explain these results whereby
at pH 7 the predominant counterion to the SB is Asp299 (the homologue
to Asp212 in BR) while Glu169 (the homologue to Asp85 in BR) exists
in a neutral state. We observe an unusual constancy of the resonance
Raman spectra over the broad range from pH 9 to 2 and discuss its
implications. These results are in accord with recent visible absorption
and current measurements of CaChR1 [Sineshchekov,
O. A., et al. (2013) Intramolecular proton transfer in channelrhodopsins. Biophys. J. 104, 807–817; Li, H., et al. (2014) Role
of a helix B lysine residue in the photoactive site in channelrhodopsins. Biophys. J. 106, 1607–1617].
Collapse
Affiliation(s)
- John I Ogren
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | |
Collapse
|