1
|
Shahsavani MB, Hoshino M, Kumar A, Yousefi R. Charge manipulation of the human insulin B chain C-terminal to shed light on the complex mechanism of insulin fibrillation. Biochim Biophys Acta Gen Subj 2024; 1868:130578. [PMID: 38278307 DOI: 10.1016/j.bbagen.2024.130578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Insulin fibrillation poses a significant challenge in the development and treatment of diabetes. Current efforts to unravel its mechanisms have thus far remained incomplete. To shed light on the intricate processes behind insulin fibrillation, we employed mutagenesis techniques to introduce additional positive charge residues into the C-terminal region of the insulin B chain which plays an important role in insulin dimerization. We employed our investigation with various spectroscopic methods, electron microscopy, and molecular dynamics simulations. These methods allowed us to explore the structure and fibrillation behavior of the engineered B chains following their expression in a bacterial host and successful purification. This manipulation had a pronounced impact on the oligomerization behavior of the insulin B chain. It appears that these mutations delay the formation of the dimeric state in the process of transitioning to larger oligomers, consequently, leading to an alteration in the kinetics of fibrillation. Our findings also indicated that the mutant insulin B chains (Di-R, Di-K, and Di-H) displayed resistance to the initiation of fibrillation. This resistance can be attributed to the repulsive forces generated by the introduced positive charges, which disrupt the attractive interactions favoring nucleation. Notably, the mutant B chains formed shorter and less abundant oligomers and fibrils, which can be ascribed to the alterations induced by repulsion. Our engineered mutant B chains exhibited enhanced stability against stress-induced fibrillation, hinting at their potential utility in the development of new insulin analogs. This study underscores the significance of the C-terminal region in the initial stages of insulin B chain fibrillation, providing valuable insights into the intricate mechanisms involved and their potential pharmaceutical applications.
Collapse
Affiliation(s)
- Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Judy E, Kishore N. Prevention of insulin fibrillation by biocompatible choline-amino acid based ionic liquids: Biophysical insights. Biochimie 2023; 207:20-32. [PMID: 36471542 DOI: 10.1016/j.biochi.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
We have synthesized biocompatible ionic liquids (ILs) with choline as cation and amino acids as anions to explore their potential towards prevention of fibrillation in insulin and the obtain corresponding mechanistic insights. This has been achieved by examining the effect of these ILs on insulin at the nucleation, elongation and maturation stages of the fibrillation process. A combination of high sensitivity isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) have been employed along with spectroscopy and microscopy to evaluate interaction of the ILs at each stage of fibrillation quantitatively. Choline glycinate is observed to provide maximum stabilization to insulin compared to that provided by choline prolinate, choline leucinate, and choline valinate. This increased thermal stabilization has direct correlation with the extent of reduction in the fibrillation of insulin by ILs determined using Thioflavin T and 8-anilinonaphthalene sulfonate based fluorescence assays. ITC has permitted understanding nature of interaction of the ILs with the protein at different fibrillation stages in terms of standard molar enthalpy of interaction whereas DSC has enabled understanding the extent of reduction in thermal stability of the protein at these stages. These ILs are able to completely inhibit formation of insulin aggregates at a concentration of 50 mM. Stabilization of proteins by ILs could be explained based on involvement of preferential hydration process. The work provides biocompatible IL based approach in achieving stability and prevention of fibrillation in insulin.
Collapse
Affiliation(s)
- Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
3
|
Morimoto D, Walinda E, Yamamoto A, Scheler U, Sugase K. Rheo-NMR Spectroscopy for Cryogenic-Probe-Equipped NMR Instruments to Monitor Protein Aggregation. Curr Protoc 2022; 2:e617. [PMID: 36469649 DOI: 10.1002/cpz1.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cryogenic-probe-based Rheo-NMR spectroscopy is a recently developed methodology to obtain solution NMR spectra of protein samples in situ under external shear. It is applicable to atomic-resolution monitoring of protein aggregation in situ, thereby aiding understanding of the transient structural changes and state conversion of amyloidogenic proteins, which are strongly associated with the both the onset and the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Here, we present detailed experimental procedures for the instrumental setup and practical tips for preparation of NMR measurement to analyze protein aggregation by this technique. This protocol will thus aid future Rheo-NMR spectroscopic studies not only of protein aggregation but also of other phenomena related to shear stress, such as shear-induced viscosity increase and shear-enhanced crystallization. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Setup of a Rheo-NMR Instrument Basic Protocol 2: Adjustment of the Vertical and Horizontal Positions of the Glass Stick Basic Protocol 3: Monitoring Protein Aggregation by Rheo-NMR Spectroscopy.
Collapse
Affiliation(s)
- Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Kenji Sugase
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
5
|
Chen Y, Liu Q, Yang F, Yu H, Xie Y, Yao W. Submicron-size polystyrene modulates amyloid fibril formation: From the perspective of protein corona. Colloids Surf B Biointerfaces 2022; 218:112736. [DOI: 10.1016/j.colsurfb.2022.112736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
6
|
Bhoite SS, Han Y, Ruotolo BT, Chapman MR. Mechanistic insights into accelerated α-synuclein aggregation mediated by human microbiome-associated functional amyloids. J Biol Chem 2022; 298:102088. [PMID: 35654142 PMCID: PMC9253359 DOI: 10.1016/j.jbc.2022.102088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023] Open
Abstract
The gut microbiome has been shown to have key implications in the pathogenesis of Parkinson's disease (PD). The Escherichia coli functional amyloid CsgA is known to accelerate α-synuclein aggregation in vitro and induce PD symptoms in mice. However, the mechanism governing CsgA-mediated acceleration of α-synuclein aggregation is unclear. Here, we show that CsgA can form stable homodimeric species that correlate with faster α-synuclein amyloid aggregation. Furthermore, we identify and characterize new CsgA homologs encoded by bacteria present in the human microbiome. These CsgA homologs display diverse aggregation kinetics, and they differ in their ability to modulate α-synuclein aggregation. Remarkably, we demonstrate that slowing down CsgA aggregation leads to an increased acceleration of α-synuclein aggregation, suggesting that the intrinsic amyloidogenicity of gut bacterial CsgA homologs affects their ability to accelerate α-synuclein aggregation. Finally, we identify a complex between CsgA and α-synuclein that functions as a platform to accelerate α-synuclein aggregation. Taken together, our work reveals complex interplay between bacterial amyloids and α-synuclein that better informs our understanding of PD causation.
Collapse
Affiliation(s)
- Sujeet S Bhoite
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Khaibrakhmanova D, Nikiforova A, Li Z, Sedov I. Effect of ligands with different affinity on albumin fibril formation. Int J Biol Macromol 2022; 204:709-717. [PMID: 35134455 DOI: 10.1016/j.ijbiomac.2022.01.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022]
Abstract
The effect of binding of several ligands to bovine serum albumin on the kinetics of fibril formation at denaturing conditions is studied. The considered ligands are clinical drugs with different binding constants to albumin: relatively strong binders (naproxen, ibuprofen, warfarin with 105 to 107 binding constant values) and weak binders (isoniazid, ranitidine with 103 to 104 binding constant values). The data of thioflavin fluorescence binding assay, Congo red binding assay, and circular dichroism spectroscopy indicate ligand concentration-dependent suppression of fibril formation in the presence of strong binders and no effects in the presence of weak binders. Analysis of kinetic curves shows no induction lag associated with fibril nucleation and the first-order kinetics of fibril formation with respect to albumin concentration for all the studied systems. Using DSC method, the fractions of unfolded albumin at incubation temperature were determined for each albumin-ligand system and ligand concentration. Their magnitudes ranging from 0 to 1 correlate with the initial rates of fibril formation and with equilibrium concentrations of fibrils formed in the system after incubation for at least 120 min. The results indicate that fibrils are formed from partially or completely denatured albumin form with the rate proportional to the fraction of this form. Strong albumin binders act as thermodynamic inhibitors of fibrillation shifting the unfolding equilibrium to the side of the native ligand-bound protein.
Collapse
Affiliation(s)
| | - Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Ziying Li
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
| |
Collapse
|
8
|
Iwakawa N, Morimoto D, Walinda E, Shirakawa M, Sugase K. Multiple-State Monitoring of SOD1 Amyloid Formation at Single-Residue Resolution by Rheo-NMR Spectroscopy. J Am Chem Soc 2021; 143:10604-10613. [PMID: 34232041 DOI: 10.1021/jacs.1c02974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of protein aggregates or fibrils entails the conversion of soluble native protein monomers via multiple molecular states. No spectroscopic techniques have succeeded in capturing the transient molecular-scale events of fibrillation in situ. Here we report residue- and state-specific real-time monitoring of the fibrillation of amyotrophic lateral sclerosis-related SOD1 by rheology NMR (Rheo-NMR) spectroscopy. Under moderately denaturing conditions, where NMR signals of folded and unfolded monomeric SOD1 are simultaneously observable, the cross-peak intensities of folded monomeric SOD1 decreased faster than those of the unfolded species, and a 310-helix in folded SOD1 was deformed prior to global unfolding. Furthermore, real-time protein dynamics analysis identified residues involved in the core structure formation of SOD1 oligomers. Our findings provide insight into local and global unfolding events in SOD1 and fibril formation. This Rheo-NMR analysis will be applicable not only to atomic-level monitoring of other amyloidogenic proteins but also to quantification of shear-induced structural changes of non-amyloidogenic proteins and elucidation of shear-enhanced chemical phenomena such as viscosity increase and crystallization of various solution-state compounds.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
de Castro Fonseca M, de Oliveira JF, Araujo BHS, Canateli C, do Prado PFV, Amorim Neto DP, Bosque BP, Rodrigues PV, de Godoy JVP, Tostes K, Filho HVR, Nascimento AFZ, Saito A, Tonoli CCC, Batista FAH, de Oliveira PSL, Figueira AC, Souza da Costa S, Krepischi ACV, Rosenberg C, Westfahl H, da Silva AJR, Franchini KG. Molecular and cellular basis of hyperassembly and protein aggregation driven by a rare pathogenic mutation in DDX3X. iScience 2021; 24:102841. [PMID: 34381968 PMCID: PMC8335631 DOI: 10.1016/j.isci.2021.102841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Current studies estimate that 1–3% of females with unexplained intellectual disability (ID) present de novo splice site, nonsense, frameshift, or missense mutations in the DDX3X protein (DEAD-Box Helicase 3 X-Linked). However, the cellular and molecular mechanisms by which DDX3X mutations impair brain development are not fully comprehended. Here, we show that the ID-linked missense mutation L556S renders DDX3X prone to aggregation. By using a combination of biophysical assays and imaging approaches, we demonstrate that this mutant assembles solid-like condensates and amyloid-like fibrils. Although we observed greatly reduced expression of the mutant allele in a patient who exhibits skewed X inactivation, this appears to be enough to sequestrate healthy proteins into solid-like ectopic granules, compromising cell function. Therefore, our data suggest ID-linked DDX3X L556S mutation as a disorder arising from protein misfolding and aggregation. DDX3X mutations skew X-inactivation and are found in 1-3% of unexplained ID in females DDX3X mutant proteins assemble solid-like condensates and amyloid-like fibrils Aberrant granules formed by DDX3X mutants sequestrate healthy DDX3X protein ID-linked DDX3X L556S mutation decreases cell viability and induces apoptosis
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Juliana Ferreira de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Paula Favoretti Vital do Prado
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Andrey Fabricio Ziem Nascimento
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Angela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Ana Carolina Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Harry Westfahl
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antônio José Roque da Silva
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, Brazil
| |
Collapse
|
10
|
Iwakawa N, Morimoto D, Walinda E, Leeb S, Shirakawa M, Danielsson J, Sugase K. Transient Diffusive Interactions with a Protein Crowder Affect Aggregation Processes of Superoxide Dismutase 1 β-Barrel. J Phys Chem B 2021; 125:2521-2532. [PMID: 33657322 DOI: 10.1021/acs.jpcb.0c11162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggregate formation of superoxide dismutase 1 (SOD1) inside motor neurons is known as a major factor in onset of amyotrophic lateral sclerosis. The thermodynamic stability of the SOD1 β-barrel has been shown to decrease in crowded environments such as inside a cell, but it remains unclear how the thermodynamics of crowding-induced protein destabilization relate to SOD1 aggregation. Here we have examined the effects of a protein crowder, lysozyme, on fibril aggregate formation of the SOD1 β-barrel. We found that aggregate formation of SOD1 is decelerated even in mildly crowded solutions. Intriguingly, transient diffusive interactions with lysozyme do not significantly affect the static structure of the SOD1 β-barrel but stabilize an alternative excited "invisible" state. The net effect of crowding is to favor species off the aggregation pathway, thereby explaining the decelerated aggregation in the crowded environment. Our observations suggest that the intracellular environment may have a similar negative (inhibitory) effect on fibril formation of other amyloidogenic proteins in living cells. Deciphering how crowded intracellular environments affect aggregation and fibril formation of such disease-associated proteins will probably become central in understanding the exact role of aggregation in the etiology of these enigmatic diseases.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Chen X, Deng X, Han X, Liang Y, Meng Z, Liu R, Su W, Zhu H, Fu T. Inhibition of Lysozyme Amyloid Fibrillation by Silybin Diastereoisomers: The Effects of Stereochemistry. ACS OMEGA 2021; 6:3307-3318. [PMID: 33553948 PMCID: PMC7860231 DOI: 10.1021/acsomega.0c05788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Silybin is a flavonoid lignin compound consisting of two diastereomers with nearly equal molar ratios. It has been reported that silybin can effectively inhibit the aggregation of amyloid protein, but the difference between the two silybin diastereomers has been rarely studied. In this work, the inhibitory ability of silybin to hen egg-white lysozyme (HEWL) was demonstrated, and the difference of kinetic parameters of two diastereomers was analyzed. Fluorescence quenching titration was utilized to analyze the binding differences to native HEWL between the diastereomers, and transmission electron microscopy (TEM) was utilized to analyze the characteristics of the surface of various samples. The differences between hydrophobicity and the secondary structure among several HEWL samples were measured by the 8-anilino-1-naphthalene sulfonic (ANS) acid fluorescence probe, Raman spectra, and far-UV circular dichroism. Moreover, the differences in the binding energy of these two diastereomers with HEWL were analyzed by molecular docking. Also, we have investigated the effect of silybin diastereomers on HEWL fibril-induced cytotoxicity in SH-SY5Y cells. Results show that silybin has a certain inhibitory effect on the HEWL fibrillogenesis process, while silybin B (SB) has a more significant inhibitory effect than silybin A (SA), especially at high concentrations. This work provides some insights into the screening of amyloid inhibitors from complicated natural products and indicates that SB has the prospect of further development as an amyloid inhibitor.
Collapse
Affiliation(s)
- Xuanyu Chen
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Xiaomin Deng
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Xingxing Han
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Yinmei Liang
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Zhiping Meng
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Rui Liu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Wenqiang Su
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
| | - Huaxu Zhu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
- Separation
Engineering of Chinese Traditional Medicine Compound, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
- Plant
Medicine Research and Technological Development Center of Jiangsu
Province, Nanjing 210023, China
- Separation
Engineering of Chinese Traditional Medicine Compound, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
12
|
The Aggregation Pattern of Aβ
1–40
is Altered by the Presence of
N
‐Truncated Aβ
4–40
and/or Cu
II
in a Similar Way through Ionic Interactions. Chemistry 2021; 27:2798-2809. [DOI: 10.1002/chem.202004484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/19/2022]
|
13
|
Veloso SRS, Silva JFG, Hilliou L, Moura C, Coutinho PJG, Martins JA, Testa-Anta M, Salgueiriño V, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E16. [PMID: 33374786 PMCID: PMC7824179 DOI: 10.3390/nano11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Joana F. G. Silva
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Cacilda Moura
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Paulo J. G. Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - José A. Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Martín Testa-Anta
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | | | - Paula M. T. Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Elisabete M. S. Castanheira
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| |
Collapse
|
14
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
15
|
Modulating Insulin Fibrillation Using Engineered B-Chains with Mutated C-Termini. Biophys J 2019; 117:1626-1641. [PMID: 31607389 DOI: 10.1016/j.bpj.2019.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Stress-induced unfolding and fibrillation of insulin represent serious medical and biotechnological problems. Despite many attempts to elucidate the molecular mechanisms of insulin fibrillation, there is no general agreement on how this process takes place. Several previous studies suggested the importance of the C-terminal region of B-chain in this pathway. Therefore, we generated the T30R and K29R/T30R mutants of insulin B-chain. Recombinantly produced wild-type A-chain and mutant B-chains were combined efficiently in the presence of chaperone αB-crystallin. The mutant B-chains along with the control wild-type insulin were used in a wide range of parallel experiments to compare their fibrillation kinetics, morphology of fibrils, and forces driving the fibril formation. The mutant insulins and their B-chains displayed significant resistance against stress-induced fibrillation, particularly at the nucleation stage, suggesting that the B-chain might be influencing the insulin fibrillation. The fact that the different mature insulins formed larger fibrillar bundles compared to those formed by their B-chains alone suggested the role of A-chain in the lateral association of the insulin fibrils. Overall, in addition to the N-terminal region of the B-chain, which was shown to serve as an important regulator of insulin fibrillation, the C-terminal region of this peptide is also crucial for the control of fibrillation, likely serving as an attachment site engaged in the formation of the nucleus and protofibril. Finally, two mutated insulin variants examined in this study might be of interest to the pharmaceutical sector as, to our knowledge, novel intermediate-acting insulin analogs because of their suitable biological activity and improved stability against stress-induced fibrillation.
Collapse
|
16
|
Kalhor HR, Ashrafian H. Identification of an aspidospermine derivative from borage extract as an anti-amyloid compound: A possible link between protein aggregation and antimalarial drugs. PHYTOCHEMISTRY 2017; 140:134-140. [PMID: 28499255 DOI: 10.1016/j.phytochem.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
A number of human diseases, including Alzheimer's and Parkinson's have been linked to amyloid formation. To search for an anti-amyloidogenic product, alkaloid enriched extract from borage leaves was examined for anti-amyloidogenic activity using Hen Egg White Lysozyme (HEWL) as a model protein. After isolation of the plant extract using rHPLC, only one fraction indicated a significant bioactivity. TEM analysis confirmed a remarkable reduction of amyloid fibrils in the presence of the bioactive fraction. To identify the effective substance in the fraction, mass spectrometry, FTIR, and NMR were performed. Our analyses determined that the bioactive compound as 1-acetyl-19,21-epoxy-15,16-dimethoxyaspidospermidine-17-ol, a derivative of aspidospermine. To investigate the mechanism of the inhibition, ANS binding, intrinsic fluorescence, and amide I content were performed in the presence of the bioactive compound. All the results confirmed the role of the compound in assisting the proper folding of the protein. In addition, molecular docking indicated the aspidospermine derivative binds the amyloidogenic region of the protein. Our results show that the alkaloid extracted from borage leaves reduces protein aggregation mediating through structural elements of the protein, promoting the correct folding of lysozyme. Since a number of aspidospermine compounds have been shown to possess potent antimalarial activities, the action of compound identified in the present study suggests a possible link between protein aggregation and aspidospermine drugs.
Collapse
Affiliation(s)
- Hamid R Kalhor
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Hossein Ashrafian
- Biochemistry Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
17
|
Kurganov BI. Quantification of anti-aggregation activity of chaperones. Int J Biol Macromol 2017; 100:104-117. [DOI: 10.1016/j.ijbiomac.2016.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
18
|
Marasini C, Foderà V, Vestergaard B. Sucrose modulates insulin amyloid-like fibril formation: effect on the aggregation mechanism and fibril morphology. RSC Adv 2017. [DOI: 10.1039/c6ra25872g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sucrose modifies the human insulin fibrillation pathways, affecting the fibril morphology.
Collapse
Affiliation(s)
- Carlotta Marasini
- Department of Drug Design and Pharmacology
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Vito Foderà
- Section for Biologics
- Department of Pharmacy
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| |
Collapse
|
19
|
Mudliar NH, Pettiwala AM, Awasthi AA, Singh PK. On the Molecular Form of Amyloid Marker, Auramine O, in Human Insulin Fibrils. J Phys Chem B 2016; 120:12474-12485. [PMID: 27973839 DOI: 10.1021/acs.jpcb.6b10078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Designing extrinsic fluorescence sensors for amyloid fibrils is a very active and important area of research. Recently, an ultrafast molecule rotor dye, Auramine O (AuO), has been projected as a fluorescent amyloid marker. It has been claimed that AuO scores better than the most extensively utilized gold-standard amyloid probe, Thioflavin-T (ThT). This advantage arises from the fact that AuO, in addition to its usual emission band (∼500 nm), also displays a large red-shifted emission band (∼560 nm), exclusively in the presence of human insulin fibril medium and not in the native protein or buffer media. On the contrary, for ThT, the emission maximum (∼490 nm) largely remains unchanged while going from protein to fibril. This otherwise unknown large red-shifted emission band of AuO, observed in the presence of human insulin fibrils, was tentatively attributed to a species formed upon fast proton dissociation from excited AuO. It was proposed that because of the long excited-state lifetime (∼1.8 ns) of AuO upon association with human insulin fibrils, this fast proton dissociation from excited AuO could be observed, which is otherwise not observed in buffer or native protein media, owing to its very short excited-state lifetime (∼1 ps). Herein, we show that despite the long excited-state lifetime of AuO in other fibrillar media (human serum albumin and lysozyme), the new red-shifted emission band at 560 nm is not observed, thus possibly suggesting a different origin of the red-shifted emission band of AuO in human insulin fibril medium. We convincingly show that this red-shifted band of AuO (∼560 nm) could be observed under conditions that promote dye aggregation, such as a premicellar concentration of surfactants and polyelectrolytes. These AuO aggregates display strong emission wavelength dependence of transient decay traces, similar to that for AuO in human insulin fibril medium. Detailed time-resolved emission spectral (TRES) measurements suggest that the AuO/premicellar surfactant and AuO/human insulin fibril system share similar features, such as a dynamic red-shift in TRES and an isoemissive point in the time-resolved area-normalized emission spectra, suggesting that the characteristic red-shifted emission band of AuO in human insulin fibril medium may arise from AuO aggregates.
Collapse
Affiliation(s)
- Niyati H Mudliar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Aafrin M Pettiwala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| |
Collapse
|
20
|
Mudliar NH, Sadhu B, Pettiwala AM, Singh PK. Evaluation of an Ultrafast Molecular Rotor, Auramine O, as a Fluorescent Amyloid Marker. J Phys Chem B 2016; 120:10496-10507. [DOI: 10.1021/acs.jpcb.6b07807] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niyati H. Mudliar
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Biswajit Sadhu
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Aafrin M. Pettiwala
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, ‡Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
21
|
Shoffner SK, Schnell S. Estimation of the lag time in a subsequent monomer addition model for fibril elongation. Phys Chem Chem Phys 2016; 18:21259-68. [DOI: 10.1039/c5cp07845h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lag time for dock–lock fibril elongation can be estimated from kinetic parameters.
Collapse
Affiliation(s)
- Suzanne K. Shoffner
- Department of Molecular & Integrative Physiology
- University of Michigan Medical School
- Ann Arbor
- USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology
- University of Michigan Medical School
- Ann Arbor
- USA
- Department of Computational Medicine & Bioinformatics
| |
Collapse
|
22
|
Elbassal EA, Liu H, Morris C, Wojcikiewicz EP, Du D. Effects of Charged Cholesterol Derivatives on Aβ40 Amyloid Formation. J Phys Chem B 2015; 120:59-68. [PMID: 26652010 DOI: 10.1021/acs.jpcb.5b09557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Understanding of the mechanistic progess of amyloid-β peptide (Aβ) aggregation is critical for elucidating the underlying pathogenesis of Alzheimer's disease (AD). Herein, we report for the first time the effects of two cholesterol derivatives, negatively charged cholesterol sulfate (cholesterol-SO4) and positively charged 3β-[N-(dimethylaminoethane)carbamoyl]-cholesterol (DC-cholesterol), on the fibrillization of Aβ40. Our results demonstrate that both of the nonvesicular forms of cholesterol-SO4 and DC-cholesterol moderately accelerate the aggregation rate of Aβ40. This effect is similar to that observed for unmodified cholesterol, indicating the importance of hydrophobic interactions in binding of Aβ40 to these steroid molecules. Furthermore, we show that the vesicles formed at higher concentrations of anionic cholesterol-SO4 facilitate Aβ40 aggregation rate markedly. In contrast, the cationic DC-cholesterol vesicles show the ability to inhibit Aβ40 fibril formation under appropriate experimental conditions. The results suggest that the electrostatic interactions between Aβ40 and the charged vesicles can be of great importance in regulating Aβ40-vesicle interaction. Our results also indicate that the structural properties of the aggregates of the cholesterol derivatives, including the surface charge and the size of the vesicles, are critical in regulating the effects of these vesicles on Aβ40 aggregation kinetics.
Collapse
Affiliation(s)
- Esmail A Elbassal
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Haiyang Liu
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Clifford Morris
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Ewa P Wojcikiewicz
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry and ‡Department of Biomedical Science, Florida Atlantic University , Boca Raton, Florida 33431, United States
| |
Collapse
|
23
|
Liu H, Ojha B, Morris C, Jiang M, Wojcikiewicz EP, Rao PPN, Du D. Positively Charged Chitosan and N-Trimethyl Chitosan Inhibit Aβ40 Fibrillogenesis. Biomacromolecules 2015; 16:2363-73. [DOI: 10.1021/acs.biomac.5b00603] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | | | | | - Praveen P. N. Rao
- School
of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|