1
|
Rousseau DL, Ishigami I, Yeh SR. Structural and functional mechanisms of cytochrome c oxidase. J Inorg Biochem 2024; 262:112730. [PMID: 39276716 DOI: 10.1016/j.jinorgbio.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.
Collapse
Affiliation(s)
- Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Kariev AM, Green ME. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. MEMBRANES 2024; 14:37. [PMID: 38392664 PMCID: PMC10890431 DOI: 10.3390/membranes14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the Kv1.2 channel. Evidence comes from the effects of D2O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Michael E Green
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
3
|
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba 3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023; 25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.
Collapse
Affiliation(s)
- Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Shaohui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Zhili Yin
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Mengguo Chen
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Illinois 60660, USA
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
4
|
Di Trani JM, Moe A, Riepl D, Saura P, Kaila VRI, Brzezinski P, Rubinstein JL. Structural basis of mammalian complex IV inhibition by steroids. Proc Natl Acad Sci U S A 2022; 119:e2205228119. [PMID: 35858451 PMCID: PMC9335260 DOI: 10.1073/pnas.2205228119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/18/2022] [Indexed: 01/21/2023] Open
Abstract
The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Agnes Moe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
5
|
Protons in Gating the Kv1.2 Channel: A Calculated Set of Protonation States in Response to Polarization/Depolarization of the Channel, with the Complete Proposed Proton Path from Voltage Sensing Domain to Gate. MEMBRANES 2022; 12:membranes12070718. [PMID: 35877921 PMCID: PMC9318985 DOI: 10.3390/membranes12070718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022]
Abstract
We have in the past proposed that proton motion constitutes the gating current in the potassium channel Kv1.2 and is responsible for the gating mechanism. For this to happen, there must be a proton path between the voltage-sensing domain (VSD) and the channel gate, and here we present quantum calculations that lead to a specific pair of proton paths, defined at the molecular level, with well-defined water molecule linkages, and with hydrogen bonding between residues; there is also at least one interpath crossover, where protons can switch paths. Quantum calculations on the entire 563-atom system give the complete geometry, the energy, and atomic charges. Calculations show that three specific residues (in the pdb 3Lut numbering, H418, E327, R326), and the T1 intracellular moiety, all of which have been shown experimentally to be involved in gating, would necessarily be protonated or deprotonated in the path between the VSD and the gate. Hydroxyl reorientation of serine and threonine residues are shown to provide a means of adjusting proton directions of motion. In the deprotonated state for K312, a low energy state, our calculations come close to reproducing the X-ray structure. The demonstration of the existence of a double proton path between VSD and gate supports the proposed proton gating mechanism; when combined with our earlier demonstration of proton generation in the VSD, and comparison with other systems that are known to move protons, we are close to achieving the definition of a complete gating mechanism in molecular detail. The coupling of the paths to the VSD, and to the PVPV section that essentially forms the gate, can be easily seen from the results of the calculation. The gate itself remains for further computations.
Collapse
|
6
|
Dragelj J, Mroginski MA, Knapp EW. Beating Heart of Cytochrome c Oxidase: The Shared Proton of Heme a3 Propionates. J Phys Chem B 2021; 125:9668-9677. [PMID: 34427096 DOI: 10.1021/acs.jpcb.1c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome c oxidase (CcO) pumps protons from the N-side to the P-side and consumes electrons from the P-side of the mitochondrial membrane driven by energy gained from reduction of dioxygen to water. ATP synthesis uses the resulting proton gradient and electrostatic potential difference. Since the distance a proton travels through CcO is too large for a one-step transfer process, proton-loading sites (PLS) that can carry protons transiently are necessary. One specific pump-active PLS couples to the redox reaction, thus energizing the proton to move across the membrane against electric potential and proton gradient. The PLS should also prevent proton backflow. Therefore, the propionates of the two redox-active hemes in CcO were suggested as PLS candidates although, according to CcO crystal structures, none of the four propionates can be protonated on account of strong H-bonds. Here, we show that modeling the local structure around heme a3 propionates enhances significantly their capability of carrying a proton jointly. This was not possible for the propionates of heme a. The modeled structures are stable in molecular dynamics simulations (MDS) and are energetically similar to the crystal structure. Precise electrostatic energy computations of MDS data are used to estimate the pKA values of all titratable residues in CcO. For the modeled structures, the heme a3 propionates have pKA values high enough to host a proton transiently but not too high to fix the proton permanently. The change in pKA throughout the redox reaction is sufficient to push the proton to the P-side of the membrane and to provide the protons with the necessary amount of energy for ATP synthesis.
Collapse
Affiliation(s)
- Jovan Dragelj
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany.,Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Ernst Walter Knapp
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
7
|
Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba 3 from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148450. [PMID: 34022199 DOI: 10.1016/j.bbabio.2021.148450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
Cytochrome ba3 from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons. Here we have studied the effect of the T315V substitution in the K channel on the kinetics of membrane potential generation coupled to the oxidative half-reaction of the catalytic cycle of cytochrome ba3. The results suggest that the mutated enzyme does not pump protons during the reaction of the fully reduced form with molecular oxygen in a single turnover. Specific inhibition of proton pumping in the T315V mutant appears to be a consequence of inability to provide rapid (τ ~ 100 μs) reprotonation of the internal transient proton donor(s) of the K channel. In contrast to the A family, the K channel of the B-type oxidases is necessary for the electrogenic transfer of both pumped and substrate protons during the oxidative half-reaction of the catalytic cycle.
Collapse
|
8
|
Noodleman L, Han Du WG, McRee D, Chen Y, Goh T, Götz AW. Coupled transport of electrons and protons in a bacterial cytochrome c oxidase-DFT calculated properties compared to structures and spectroscopies. Phys Chem Chem Phys 2021; 22:26652-26668. [PMID: 33231596 DOI: 10.1039/d0cp04848h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After a general introduction to the features and mechanisms of cytochrome c oxidases (CcOs) in mitochondria and aerobic bacteria, we present DFT calculated physical and spectroscopic properties for the catalytic reaction cycle compared with experimental observations in bacterial ba3 type CcO, also with comparisons/contrasts to aa3 type CcOs. The Dinuclear Complex (DNC) is the active catalytic reaction center, containing a heme a3 Fe center and a near lying Cu center (called CuB) where by successive reduction and protonation, molecular O2 is transformed to two H2O molecules, and protons are pumped from an inner region across the membrane to an outer region by transit through the CcO integral membrane protein. Structures, energies and vibrational frequencies for Fe-O and O-O modes are calculated by DFT over the catalytic cycle. The calculated DFT frequencies in the DNC of CcO are compared with measured frequencies from Resonance Raman spectroscopy to clarify the composition, geometry, and electronic structures of different intermediates through the reaction cycle, and to trace reaction pathways. X-ray structures of the resting oxidized state are analyzed with reference to the known experimental reaction chemistry and using DFT calculated structures in fitting observed electron density maps. Our calculations lead to a new proposed reaction pathway for coupling the PR → F → OH (ferryl-oxo → ferric-hydroxo) pathway to proton pumping by a water shift mechanism. Through this arc of the catalytic cycle, major shifts in pKa's of the special tyrosine and a histidine near the upper water pool activate proton transfer. Additional mechanisms for proton pumping are explored, and the role of the CuB+ (cuprous state) in controlling access to the dinuclear reaction site is proposed.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Cai X, Son CY, Mao J, Kaur D, Zhang Y, Khaniya U, Cui Q, Gunner MR. Identifying the proton loading site cluster in the ba 3 cytochrome c oxidase that loads and traps protons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148239. [PMID: 32531221 DOI: 10.1016/j.bbabio.2020.148239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.
Collapse
Affiliation(s)
- Xiuhong Cai
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Junjun Mao
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Divya Kaur
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Chemistry, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Qiang Cui
- Department of Chemistry & Department of Biomedical Engineering & Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - M R Gunner
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Department of Chemistry, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
10
|
Kariev AM, Green ME. Quantum Calculation of Proton and Other Charge Transfer Steps in Voltage Sensing in the Kv1.2 Channel. J Phys Chem B 2019; 123:7984-7998. [DOI: 10.1021/acs.jpcb.9b05448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisher M. Kariev
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| | - Michael E. Green
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| |
Collapse
|
11
|
The Role of Proton Transport in Gating Current in a Voltage Gated Ion Channel, as Shown by Quantum Calculations. SENSORS 2018; 18:s18093143. [PMID: 30231473 PMCID: PMC6163810 DOI: 10.3390/s18093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
Over two-thirds of a century ago, Hodgkin and Huxley proposed the existence of voltage gated ion channels (VGICs) to carry Na+ and K+ ions across the cell membrane to create the nerve impulse, in response to depolarization of the membrane. The channels have multiple physiological roles, and play a central role in a wide variety of diseases when they malfunction. The first channel structure was found by MacKinnon and coworkers in 1998. Subsequently, the structure of a number of VGICs was determined in the open (ion conducting) state. This type of channel consists of four voltage sensing domains (VSDs), each formed from four transmembrane (TM) segments, plus a pore domain through which ions move. Understanding the gating mechanism (how the channel opens and closes) requires structures. One TM segment (S4) has an arginine in every third position, with one such segment per domain. It is usually assumed that these arginines are all ionized, and in the resting state are held toward the intracellular side of the membrane by voltage across the membrane. They are assumed to move outward (extracellular direction) when released by depolarization of this voltage, producing a capacitive gating current and opening the channel. We suggest alternate interpretations of the evidence that led to these models. Measured gating current is the total charge displacement of all atoms in the VSD; we propose that the prime, but not sole, contributor is proton motion, not displacement of the charges on the arginines of S4. It is known that the VSD can conduct protons. Quantum calculations on the Kv1.2 potassium channel VSD show how; the key is the amphoteric nature of the arginine side chain, which allows it to transfer a proton. This appears to be the first time the arginine side chain has had its amphoteric character considered. We have calculated one such proton transfer in detail: this proton starts from a tyrosine that can ionize, transferring to the NE of the third arginine on S4; that arginine’s NH then transfers a proton to a glutamate. The backbone remains static. A mutation predicted to affect the proton transfer has been qualitatively confirmed experimentally, from the change in the gating current-voltage curve. The total charge displacement in going from a normal closed potential of −70 mV across the membrane to 0 mV (open), is calculated to be approximately consistent with measured values, although the error limits on the calculation require caution in interpretation.
Collapse
|
12
|
Batebi H, Dragelj J, Imhof P. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex. Proteins 2018; 86:439-453. [PMID: 29344998 DOI: 10.1002/prot.25460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/11/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal-dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg2+ -ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction-competent conformation. Active-site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1-DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule.
Collapse
Affiliation(s)
- Hossein Batebi
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Jovan Dragelj
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36A, Berlin, 14195, Germany
| | - Petra Imhof
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
13
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|
14
|
Han Du WG, Götz AW, Noodleman L. A Water Dimer Shift Activates a Proton Pumping Pathway in the P R → F Transition of ba 3 Cytochrome c Oxidase. Inorg Chem 2018; 57:1048-1059. [PMID: 29308889 DOI: 10.1021/acs.inorgchem.7b02461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Broken-symmetry density functional calculations have been performed on the [Fea34+,CuB2+] state of the dinuclear center (DNC) for the PR → F part of the catalytic cycle of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt), using the OLYP-D3-BJ functional. The calculations show that the movement of the H2O molecules in the DNC affects the pKa values of the residue side chains of Tyr237 and His376+, which are crucial for proton transfer/pumping in ba3 CcO from Tt. The calculated lowest energy structure of the DNC in the [Fea34+,CuB2+] state (state F) is of the form Fea34+═O2-···CuB2+, in which the H2O ligand that resulted from protonation of the OH- ligand in the PR state is dissociated from the CuB2+ site. The calculated Fea34+═O2- distance in F (1.68 Å) is 0.03 Å longer than that in PR (1.65 Å), which can explain the different Fea34+═O2- stretching modes in P (804 cm-1) and F (785 cm-1) identified by resonance Raman experiments. In this F state, the CuB2+···O2- (ferryl-oxygen) distance is only around 2.4 Å. Hence, the subsequent OH state [Fea33+-OH--CuB2+] with a μ-hydroxo bridge can be easily formed, as shown by our calculations.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093, United States
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Yang L, Skjevik ÅA, Han Du WG, Noodleman L, Walker RC, Götz AW. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1594-1606. [PMID: 27317965 PMCID: PMC4995112 DOI: 10.1016/j.bbabio.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 01/22/2023]
Abstract
Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376.
Collapse
Affiliation(s)
- Longhua Yang
- Department of Chemistry, Nanchang University, 999 Xuefudadao, Nanchang, Jiangxi 330031, China; San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA
| | - Åge A Skjevik
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Sakalli I, Knapp EW. pK(A) in proteins solving the Poisson-Boltzmann equation with finite elements. J Comput Chem 2015; 36:2147-57. [PMID: 26284944 DOI: 10.1002/jcc.24053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/12/2022]
Abstract
Knowledge on pK(A) values is an eminent factor to understand the function of proteins in living systems. We present a novel approach demonstrating that the finite element (FE) method of solving the linearized Poisson-Boltzmann equation (lPBE) can successfully be used to compute pK(A) values in proteins with high accuracy as a possible replacement to finite difference (FD) method. For this purpose, we implemented the software molecular Finite Element Solver (mFES) in the framework of the Karlsberg+ program to compute pK(A) values. This work focuses on a comparison between pK(A) computations obtained with the well-established FD method and with the new developed FE method mFES, solving the lPBE using protein crystal structures without conformational changes. Accurate and coarse model systems are set up with mFES using a similar number of unknowns compared with the FD method. Our FE method delivers results for computations of pK(A) values and interaction energies of titratable groups, which are comparable in accuracy. We introduce different thermodynamic cycles to evaluate pK(A) values and we show for the FE method how different parameters influence the accuracy of computed pK(A) values.
Collapse
Affiliation(s)
- Ilkay Sakalli
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Ernst-Walter Knapp
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Fabeckstr. 36a, 14195, Berlin, Germany
| |
Collapse
|