1
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Tworek P, Rakowski K, Szota M, Lekka M, Jachimska B. Changes in Secondary Structure and Properties of Bovine Serum Albumin as a Result of Interactions with Gold Surface. Chemphyschem 2024; 25:e202300505. [PMID: 38009440 DOI: 10.1002/cphc.202300505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Proteins can alter their shape when interacting with a surface. This study explores how bovine serum albumin (BSA) modifies structurally when it adheres to a gold surface, depending on the protein concentration and pH. We verified that the gold surface induces significant structural modifications to the BSA molecule using circular dichroism, infrared spectroscopy, and atomic force microscopy. Specifically, adsorbed molecules displayed increased levels of disordered structures and β-turns, with fewer α-helices than the native structure. MP-SPR spectroscopy demonstrated that the protein molecules preferred a planar orientation during adsorption. Molecular dynamics simulations revealed that the interaction between cysteines exposed to the outside of the molecule and the gold surface was vital, especially at pH=3.5. The macroscopic properties of the protein film observed by AFM and contact angles confirm the flexible nature of the protein itself. Notably, structural transformation is joined with the degree of hydration of protein layers.
Collapse
Affiliation(s)
- Paulina Tworek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Kamil Rakowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| |
Collapse
|
3
|
Vlachy V, Kalyuzhnyi YV, Hribar-Lee B, Dill KA. Protein Association in Solution: Statistical Mechanical Modeling. Biomolecules 2023; 13:1703. [PMID: 38136574 PMCID: PMC10742237 DOI: 10.3390/biom13121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Protein molecules associate in solution, often in clusters beyond pairwise, leading to liquid phase separations and high viscosities. It is often impractical to study these multi-protein systems by atomistic computer simulations, particularly in multi-component solvents. Instead, their forces and states can be studied by liquid state statistical mechanics. However, past such approaches, such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, were limited to modeling proteins as spheres, and contained no microscopic structure-property relations. Recently, this limitation has been partly overcome by bringing the powerful Wertheim theory of associating molecules to bear on protein association equilibria. Here, we review these developments.
Collapse
Affiliation(s)
- Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY 11794, USA;
- Department of Chemistry, Physics and Astronomy, Stony Brook University, New York, NY 11790, USA
| |
Collapse
|
4
|
Hassan L, Xu C, Boehm M, Baier SK, Sharma V. Ultrathin Micellar Foam Films of Sodium Caseinate Protein Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6102-6112. [PMID: 37074870 DOI: 10.1021/acs.langmuir.3c00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sodium caseinates (NaCas), derived from milk proteins called caseins, are often added to food formulations as emulsifiers, foaming agents, and ingredients for producing dairy products. In this contribution, we contrast the drainage behavior of single foam films made with micellar NaCas solutions with well-established features of stratification observed for the micellar sodium dodecyl sulfate (SDS) foam films. In reflected light microscopy, the stratified SDS foam films display regions with distinct gray colors due to differences in interference intensity from coexisting thick-thin regions. Using IDIOM (interferometry digital imaging optical microscopy) protocols we pioneered for mapping nanotopography of foam films, we showed that drainage via stratification in SDS films proceeds by the expansion of flat domains that are thinner than surrounding by a concentration-dependent step-size, and nonflat features (nanoridges and mesas) form at the moving front. Furthermore, stratifying SDS foam films show stepwise thinning, such that the step-size and terminal film thickness decrease with concentration. Here we visualize the nanotopography in protein films with high spatiotemporal resolution using IDIOM protocols to address two long-standing questions. Do protein foam films formulated with NaCas undergo drainage via stratification? Are thickness transitions and variations in protein foam films determined by intermicellar interactions and supramolecular oscillatory disjoining pressure? In contrast with foam films containing micellar SDS, we find that micellar NaCas foam films display just one step, nonflat and noncircular domains that expand without forming nanoridges and a terminal thickness that increases with NaCas concentration. We infer that the differences in adsorbing and self-assembling unimers triumph over any similarities in the structure and interactions of their micelles.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Michael Boehm
- Motif Foodworks, 27 Drydock Avenue, Boston, Massachusetts 02210, United States
| | - Stefan K Baier
- Motif Foodworks, 27 Drydock Avenue, Boston, Massachusetts 02210, United States
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Cook KR, Head D, Dougan L. Modelling network formation in folded protein hydrogels by cluster aggregation kinetics. SOFT MATTER 2023; 19:2780-2791. [PMID: 36988480 DOI: 10.1039/d3sm00111c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Globular folded protein-based hydrogels are becoming increasingly attractive due to their specific biological functionality, as well as their responsiveness to stimuli. By modelling folded proteins as colloids, there are rich opportunities to explore network formation mechanisms in protein hydrogels that negate the need for computationally expensive simulations which capture the full complexity of proteins. Here we present a kinetic lattice-based model which simulates the formation of irreversibly chemically crosslinked, folded protein-based hydrogels. We identify the critical point of gel percolation, explore the range of network regimes covering diffusion-limited to reaction-limited cluster aggregation (DLCA and RLCA, respectively) network formation mechanisms and predict the final network structure, fractal dimensions and final gel porosity. We reveal a crossover between DLCA and RLCA mechanisms as a function of protein volume fraction and show how the final network structure is governed by the structure at the percolation point, regardless of the broad variation of non-percolating cluster masses observed across all systems. An analysis of the pore size distribution in the final network structures reveals that, approaching RLCA, gels have larger maximal pores than the DLCA counterparts for both volume fractions studied. This general kinetic model and the analysis tools generate predictions of network structure and concurrent porosity over a broad range of experimentally controllable parameters that are consistent with current expectations and understanding of experimental results.
Collapse
Affiliation(s)
- Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - David Head
- School of Computing, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
Di Bari D, Timr S, Guiral M, Giudici-Orticoni MT, Seydel T, Beck C, Petrillo C, Derreumaux P, Melchionna S, Sterpone F, Peters J, Paciaroni A. Diffusive Dynamics of Bacterial Proteome as a Proxy of Cell Death. ACS CENTRAL SCIENCE 2023; 9:93-102. [PMID: 36712493 PMCID: PMC9881203 DOI: 10.1021/acscentsci.2c01078] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 05/30/2023]
Abstract
Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of E. coli, we clearly show that only a minor fraction of the proteome unfolds at the cell death. First, we prove that the dynamical state of the E. coli proteome is an excellent proxy for temperature-dependent bacterial metabolism and death. The proteome diffusive dynamics peaks at about the bacterial optimal growth temperature, then a dramatic dynamical slowdown is observed that starts just below the cell's death temperature. Next, we show that this slowdown is caused by the unfolding of just a small fraction of proteins that establish an entangling interprotein network, dominated by hydrophobic interactions, across the cytoplasm. Finally, the deduced progress of the proteome unfolding and its diffusive dynamics are both key to correctly reproduce the E. coli growth rate.
Collapse
Affiliation(s)
- Daniele Di Bari
- Università
degli Studi di Perugia, Dipartimento di
Fisica e Geologia, Via
A. Pascoli, 06123Perugia PG, Italy
- Université
Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38400Saint-Martin-d’Héres, France
- Institut
Laue-Langevin, 38000Grenoble, France
| | - Stepan Timr
- Laboratoire
de Biochimie Théorique (UPR9080), CNRS, Université de Paris Cité, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut
de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005Paris, France
- J.
Heyrovský
Institute of Physical Chemistry, Czech Academy
of Sciences, 182 23Prague 8, Czechia
| | - Marianne Guiral
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, BIP, CNRS, Aix-Marseille Université, 13400Marseille, France
| | | | - Tilo Seydel
- Institut
Laue-Langevin, 38000Grenoble, France
| | | | - Caterina Petrillo
- Università
degli Studi di Perugia, Dipartimento di
Fisica e Geologia, Via
A. Pascoli, 06123Perugia PG, Italy
| | - Philippe Derreumaux
- Laboratoire
de Biochimie Théorique (UPR9080), CNRS, Université de Paris Cité, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut
de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut Universitaire de France, 75005Paris, France
| | - Simone Melchionna
- ISC-CNR,
Dipartimento di Fisica, Università
Sapienza, 00185Rome, Italy
- Lexma
Technology1337 Massachusetts
Avenue, Arlington, Massachusetts02476, United States
| | - Fabio Sterpone
- Laboratoire
de Biochimie Théorique (UPR9080), CNRS, Université de Paris Cité, 13 Rue Pierre et Marie Curie, 75005Paris, France
- Institut
de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005Paris, France
| | - Judith Peters
- Université
Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38400Saint-Martin-d’Héres, France
- Institut
Laue-Langevin, 38000Grenoble, France
- Institut Universitaire de France, 75005Paris, France
| | - Alessandro Paciaroni
- Università
degli Studi di Perugia, Dipartimento di
Fisica e Geologia, Via
A. Pascoli, 06123Perugia PG, Italy
| |
Collapse
|
8
|
Ranganathan VT, Bazmi S, Wallin S, Liu Y, Yethiraj A. Is Ficoll a Colloid or Polymer? A Multitechnique Study of a Prototypical Excluded-Volume Macromolecular Crowder. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University, St. John’s, NLA1B 3X7, Canada
| |
Collapse
|
9
|
Virk SS, Underhill PT. Application of a Simple Short-Range Attraction and Long-Range Repulsion Colloidal Model toward Predicting the Viscosity of Protein Solutions. Mol Pharm 2022; 19:4233-4240. [PMID: 36129361 DOI: 10.1021/acs.molpharmaceut.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some hard-sphere colloidal models have been criticized for inaccurately predicting the solution viscosity of complex biological molecules like proteins. Competing short-range attractions and long-range repulsions, also known as short-range attraction and long-range repulsion (SALR) interactions, have been thought to affect the microstructure of a protein solution at low to moderate ionic strength. However, such interactions have been implicated primarily in causing phase transition, protein gelation, or reversible cluster formation, and their effect on protein solution viscosity change is not fully understood. In this work, we show the application of a hard-sphere colloidal model with SALR interactions toward predicting the viscosity of dilute to semi-dilute protein solutions. The comparison is performed for a globular-shaped albumin and Y-shaped therapeutic monoclonal antibody that are not explained by previous colloidal models. The model predictions show that it is the coupling between attractions and repulsions that gives rise to the observed experimental trends in solution viscosity as a function of pH, concentration, and ionic strength. The parameters of the model are obtained from measurements of the second virial coefficient and net surface charge/zeta-potential, without additional fitting of the viscosity.
Collapse
Affiliation(s)
- Sabitoj Singh Virk
- Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Patrick T Underhill
- Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
10
|
Briskot T, Hillebrandt N, Kluters S, Wang G, Studts J, Hahn T, Huuk T, Hubbuch J. Modeling the Gibbs–Donnan effect during ultrafiltration and diafiltration processes using the Poisson–Boltzmann theory in combination with a basic Stern model. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Tomar DS, Licari G, Bauer J, Singh SK, Li L, Kumar S. Stress-dependent flexibility of a full-length human monoclonal antibody: Insights from molecular dynamics to support biopharmaceutical development. J Pharm Sci 2021; 111:628-637. [PMID: 34742728 DOI: 10.1016/j.xphs.2021.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/15/2023]
Abstract
After several decades of advancements in drug discovery, product development of biopharmaceuticals remains a time- and resource-consuming endeavor. One of the main reasons is associated to the lack of fundamental understanding of conformational dynamics of such biologic entities, and how they respond to various stresses encountered during manufacturing. In this work, we have studied the conformational dynamics of human IgG1κ b12 monoclonal antibody (mAb) using molecular dynamics simulations. The hundreds of nanoseconds long trajectories reveal that b12 mAb is highly flexible. Its variable domains show greater conformational fluctuations than the constant domains. Additionally, it collapses towards a more globular shape in response to thermal stress, leading to decrease in the total solvent exposed surface area and radius of gyration. This behavior is more pronounced for the deglycosylated b12 mAb, and it appears to correlate with increase in inter-domain contacts between specific regions of the antibody. Conformational fluctuations also cause temporary formation and disruption of hydrophobic and charged patches on the antibody surface, which is particularly important for the prediction of CMC properties during development phases of antibody-based biotherapeutics. The insights gained through these simulations may help the development of biologic drugs, especially with regards to manufacturing processes where antibodies may undergo significant thermal stress.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Giuseppe Licari
- Pharmaceuticals Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., D-88397 Biberach an der Riss, Germany
| | - Joschka Bauer
- Pharmaceuticals Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., D-88397 Biberach an der Riss, Germany
| | - Satish K Singh
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Li Li
- Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts, 01810, USA
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877.
| |
Collapse
|
12
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
13
|
Quevedo M, Karbstein HP, Emin MA. Concentration-dependent changes in the reaction behavior of whey proteins: Diffusion-controlled or transition state-controlled reactions? Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kumar S, Saha D, Ray D, Abbas S, Aswal VK. Unusual stability of protein molecules in the presence of multivalent counterions. Phys Rev E 2021; 104:L012603. [PMID: 34412269 DOI: 10.1103/physreve.104.l012603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
Proteins are known to undergo denaturation and form different phases with varying physicochemical parameters. We report unusual stability of bovine serum albumin protein against commonly used denaturants (temperature and surfactant) in the charged reversal reentrant phase, caused by the multivalent counterions. Unlike monovalent counterions, which promote the denaturants' induced protein unfolding, the unfolding is restricted in the presence of multivalent ions. The observations are beyond the scope of general understanding of protein unfolding and are believed to be governed by ion-ion correlations driven strong condensation of the multivalent ions.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sohrab Abbas
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.,Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
15
|
Ye Y, Huo X, Yin Z. Protein-protein interactions at high concentrations: Effects of ArgHCl and NaCl on the stability, viscosity and aggregation mechanisms of protein solution. Int J Pharm 2021; 601:120535. [PMID: 33811966 DOI: 10.1016/j.ijpharm.2021.120535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The aim of this work was to use the diffusion coefficient ration (Dm/Dline) as a parameter to characterize the stability of protein at high concentration, to compare the effects of ArgHCl and NaCl on the interaction of highly concentrated proteins under different pH conditions, and to explore the correlation with protein stability. For this purpose, a high-concentration bovine serum albumin solution (BSA) was selected as the model system, and the diffusion coefficient, aggregation degree, conformational stability, and solution viscosity of the protein were studied by dynamic light scattering (DLS) and spectral detection techniques. The result showed that there was a significant correlation between the Dm/Dline and the protein aggregation. The Dm/Dline of the protein was minimum at pH 7.4, which corresponded to the maximum degree of aggregation and the highest solution viscosity. At pH 7.4, the hydrophobic interactions and the increased conformational stability of ArgHCl maximized the stability of the protein and reduced the viscosity of the solution by 69.3%. At pH 3.0, the strong charge shielding effect of ArgHCl and NaCl and the decreased conformational stability induced protein aggregation and the gel formation. These findings provided valuable insights into the mechanism of protein aggregation and the diffusion coefficient ration (Dm/Dline) could be a potential tool for the pre-formulation studies.
Collapse
Affiliation(s)
- Yalin Ye
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xingli Huo
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
16
|
Dauer K, Kamm W, Wagner KG, Pfeiffer-Marek S. High-Throughput Screening for Colloidal Stability of Peptide Formulations Using Dynamic and Static Light Scattering. Mol Pharm 2021; 18:1939-1955. [PMID: 33789055 DOI: 10.1021/acs.molpharmaceut.0c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selection of an appropriate formulation to stabilize therapeutic proteins against aggregation is one of the most challenging tasks in early-stage drug product development. The amount of aggregates is more difficult to quantify in the case of peptides due to their small molecular size. Here, we investigated the suitability of diffusion self-interaction parameters (kD) and osmotic second virial coefficients (B22) for high-throughput (HT) screening of peptide formulations regarding their aggregation risk. These parameters were compared to the effect of thermal stress on colloidal stability. The formulation matrix comprised six buffering systems at two selected pH values, four tonicity agents, and a common preservative. The results revealed that electrostatic interactions are the main driver to control colloidal stability. Preferred formulations consisted of acetate and succinate buffer at pH 4.5 combined with glycerol or mannitol and optional m-cresol. kD proved to be a suitable surrogate for B22 as an indicator of high colloidal stability in the case of peptides as was previously described for globular proteins and antibodies. Formulation assessment solely based on kD obtained by HT methods offers important insights into the optimization of colloidal stability during the early development of peptide-based liquid formulations and can be performed with a limited amount of peptide (∼360 mg).
Collapse
Affiliation(s)
- Katharina Dauer
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.,Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Walter Kamm
- Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Karl Gerhard Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Stefania Pfeiffer-Marek
- Pharmaceutical Development Platform, Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Hazra MK, Levy Y. Biophysics of Phase Separation of Disordered Proteins Is Governed by Balance between Short- And Long-Range Interactions. J Phys Chem B 2021; 125:2202-2211. [PMID: 33629837 PMCID: PMC8028311 DOI: 10.1021/acs.jpcb.0c09975] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Intrinsically disordered proteins
play a crucial role in cellular
phase separation, yet the diverse molecular forces driving phase separation
are not fully understood. It is of utmost importance to understand
how peptide sequence, and particularly the balance between the peptides’
short- and long-range interactions with other peptides, may affect
the stability, structure, and dynamics of liquid–liquid phase
separation in protein condensates. Here, using coarse-grained molecular
dynamics simulations, we studied the liquid properties of the condensate
in a series of polymers in which the ratio of short-range dispersion
interactions to long-range electrostatic interactions varied. As the
fraction of mutations that participate in short-range interactions
increases at the expense of long-range electrostatic interactions,
a significant decrease in the critical temperature of phase separation
is observed. Nevertheless, sequences with a high fraction of short-range
interactions exhibit stabilization, which suggests compensation for
the loss of long-range electrostatic interactions. Decreased condensate
stability is coupled with decreased translational diffusion of the
polymers in the condensate, which may result in the loss of liquid
characteristics in the presence of a high fraction of uncharged residues.
The effect of exchanging long-range electrostatic interactions for
short-range interactions can be explained by the kinetics of breaking
intermolecular contacts with neighboring polymers and the kinetics
of intramolecular fluctuations. While both time scales are coupled
and increase as electrostatic interactions are lost, for sequences
that are dominated by short-range interactions, the kinetics of intermolecular
contact breakage significantly slows down. Our study supports the
contention that different types of interactions can maintain protein
condensates, however, long-range electrostatic interactions enhance
its liquid-like behavior.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Catalini S, Perinelli DR, Sassi P, Comez L, Palmieri GF, Morresi A, Bonacucina G, Foggi P, Pucciarelli S, Paolantoni M. Amyloid Self-Assembly of Lysozyme in Self-Crowded Conditions: The Formation of a Protein Oligomer Hydrogel. Biomacromolecules 2021; 22:1147-1158. [PMID: 33600168 PMCID: PMC8023603 DOI: 10.1021/acs.biomac.0c01652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A method
is designed to quickly form protein hydrogels, based on
the self-assembly of highly concentrated lysozyme solutions in acidic
conditions. Their properties can be easily modulated by selecting
the curing temperature. Molecular insights on the gelation pathway,
derived by in situ FTIR spectroscopy, are related to calorimetric
and rheological results, providing a consistent picture on structure–property
correlations. In these self-crowded samples, the thermal unfolding
induces the rapid formation of amyloid aggregates, leading to temperature-dependent
quasi-stationary levels of antiparallel cross β-sheet links,
attributed to kinetically trapped oligomers. Upon subsequent cooling,
thermoreversible hydrogels develop by the formation of interoligomer
contacts. Through heating/cooling cycles, the starting solutions can
be largely recovered back, due to oligomer-to-monomer dissociation
and refolding. Overall, transparent protein hydrogels can be easily
formed in self-crowding conditions and their properties explained,
considering the formation of interconnected amyloid oligomers. This
type of biomaterial might be relevant in different fields, along with
analogous systems of a fibrillar nature more commonly considered.
Collapse
Affiliation(s)
- Sara Catalini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Lucia Comez
- IOM-CNR c/o Department of Physics and Geology, University of Perugia, 060123 Perugia, Italy
| | | | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.,National Metrological Research Institute (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
19
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|
20
|
Statt A, Casademunt H, Brangwynne CP, Panagiotopoulos AZ. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. J Chem Phys 2020; 152:075101. [PMID: 32087632 DOI: 10.1063/1.5141095] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phase separation of intrinsically disordered proteins is important for the formation of membraneless organelles or biomolecular condensates, which play key roles in the regulation of biochemical processes within cells. In this work, we investigated the phase separation of different sequences of a coarse-grained model for intrinsically disordered proteins and discovered a surprisingly rich phase behavior. We studied both the fraction of total hydrophobic parts and the distribution of hydrophobic parts. Not surprisingly, sequences with larger hydrophobic fractions showed conventional liquid-liquid phase separation. The location of the critical point was systematically influenced by the terminal beads of the sequence due to changes in interfacial composition and tension. For sequences with lower hydrophobicity, we observed not only conventional liquid-liquid phase separation but also re-entrant phase behavior in which the liquid phase density decreases at lower temperatures. For some sequences, we observed the formation of open phases consisting of aggregates, rather than a normal liquid. These aggregates had overall lower densities than the conventional liquid phases and exhibited complex geometries with large interconnected string-like or membrane-like clusters. Our findings suggest that minor alterations in the ordering of residues may lead to large changes in the phase behavior of the protein, a fact of significant potential relevance for biology.
Collapse
Affiliation(s)
- Antonia Statt
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Helena Casademunt
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
21
|
Stradner A, Schurtenberger P. Potential and limits of a colloid approach to protein solutions. SOFT MATTER 2020; 16:307-323. [PMID: 31830196 DOI: 10.1039/c9sm01953g] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Looking at globular proteins with the eyes of a colloid scientist has a long tradition, in fact a significant part of the early colloid literature was focused on protein solutions. However, it has also been recognized that proteins are much more complex than the typical hard sphere-like synthetic model colloids. Proteins are not perfect spheres, their interaction potentials are in general not isotropic, and using theories developed for such particles are thus clearly inadequate in many cases. In this perspective article, we now take a closer look at the field. In particular, we reflect on the fact that modern colloid science has been undergoing a tremendous development, where a multitude of novel systems have been developed in the lab and in silico. During the last decade we have seen a rapidly increasing number of reports on the synthesis of anisotropic, patchy and/or responsive synthetic colloids, that start to resemble their complex biological counterparts. This experimental development is also reflected in a corresponding theoretical and simulation effort. The experimental and theoretical toolbox of colloid science has thus rapidly expanded, and there is obviously an enormous potential for an application of these new concepts to protein solutions, which has already been realized and harvested in recent years. In this perspective article we make an attempt to critically discuss the exploitation of colloid science concepts to better understand protein solutions. We not only consider classical applications such as the attempt to understand and predict solution stability and phase behaviour, but also discuss new challenges related to the dynamics, flow behaviour and liquid-solid transitions found in concentrated or crowded protein solutions. It not only aims to provide an overview on the progress in experimental and theoretical (bio)colloid science, but also discusses current shortcomings in our ability to correctly reproduce and predict the structural and dynamic properties of protein solutions based on such a colloid approach.
Collapse
Affiliation(s)
- Anna Stradner
- Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
22
|
Affiliation(s)
- Christoffer Olsson
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
23
|
Douglas JF, Curtis R, S Sarangapani P, D Hudson S, L Jones R, A Pathak J. Hard Spheres with Purely Repulsive Interactions Have Positive Diffusion Interaction Parameter, k D. Biophys J 2019; 113:753-754. [PMID: 28793228 DOI: 10.1016/j.bpj.2017.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/10/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| | | | - Steven D Hudson
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Ronald L Jones
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Jai A Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Gaithersburg, Maryland.
| |
Collapse
|
24
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
25
|
Kumar S, Yadav I, Ray D, Abbas S, Saha D, Aswal VK, Kohlbrecher J. Evolution of Interactions in the Protein Solution As Induced by Mono and Multivalent Ions. Biomacromolecules 2019; 20:2123-2134. [PMID: 30908911 DOI: 10.1021/acs.biomac.9b00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system. However, contrary to DLVO theory, the protein solution undergoes a reentrant phase transition from one-phase to a two-phase system and then back to the one-phase system in the presence of tri and tetravalent counterions. The results show that tri and tetravalent (unlike mono and divalent) counterions induce short-range attraction between the protein molecules, leading to the transformation from one-phase to two-phase system. The two-phase is characterized by the fractal structure of protein aggregates. The excess condensation of these higher-valent counterions in the double layer around the BSA causes the reversal of charge of the protein molecules resulting into reentrant of the one-phase, at higher salt concentrations. The complete phase behavior with mono and multivalent ions has been explained in terms of the interplay of electrostatic repulsion and ion-induced short-range attraction between the protein molecules.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Division of Materials and Environmental Chemistry , Stockholm University , Frescativagen 8 , Stockholm 10691 , Sweden
| | - Indresh Yadav
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Debes Ray
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Sohrab Abbas
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India
| | - Debasish Saha
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Department of Science and Technology , New Delhi 110016 , India
| | - Vinod K Aswal
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Homi Bhabha National Institute , Mumbai 400 094 , India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, Paul Scherrer Institut , CH-5232 PSI Villigen , Switzerland
| |
Collapse
|
26
|
Li T, Lilja K, Morris RJ, Brandani GB. Langmuir–Blodgett technique for anisotropic colloids: Young investigator perspective. J Colloid Interface Sci 2019; 540:420-438. [DOI: 10.1016/j.jcis.2019.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
27
|
Boire A, Renard D, Bouchoux A, Pezennec S, Croguennec T, Lechevalier V, Le Floch-Fouéré C, Bouhallab S, Menut P. Soft-Matter Approaches for Controlling Food Protein Interactions and Assembly. Annu Rev Food Sci Technol 2019; 10:521-539. [PMID: 30633568 DOI: 10.1146/annurev-food-032818-121907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal- and plant-based proteins are present in a wide variety of raw and processed foods. They play an important role in determining the final structure of food matrices. Food proteins are diverse in terms of their biological origin, molecular structure, and supramolecular assembly. This diversity has led to segmented experimental studies that typically focus on one or two proteins but hinder a more general understanding of food protein structuring as a whole. In this review, we propose a unified view of how soft-matter physics can be used to control food protein assembly. We discuss physical models from polymer and colloidal science that best describe and predict the phase behavior of proteins. We explore the occurrence of phase transitions along two axes: increasing protein concentration and increasing molecular attraction. This review provides new perspectives on the link between the interactions, phase transitions, and assembly of proteins that can help in designing new food products and innovative food processing operations.
Collapse
Affiliation(s)
- Adeline Boire
- Biopolymères Interactions Assemblages, INRA UR1268, F-44300 Nantes, France;
| | - Denis Renard
- Biopolymères Interactions Assemblages, INRA UR1268, F-44300 Nantes, France;
| | - Antoine Bouchoux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | | | | | | | | | - Saïd Bouhallab
- STLO, INRA UMR1253, Agrocampus Ouest, F-35042 Rennes, France
| | - Paul Menut
- Montpellier SupAgro, 34060 Montpellier, France; .,Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300 Massy, France
| |
Collapse
|
28
|
Woldeyes MA, Qi W, Razinkov VI, Furst EM, Roberts CJ. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies? J Pharm Sci 2019; 108:142-154. [DOI: 10.1016/j.xphs.2018.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/10/2018] [Accepted: 07/03/2018] [Indexed: 11/26/2022]
|
29
|
Kalyuzhnyi YV, Vlachy V. Modeling the depletion effect caused by an addition of polymer to monoclonal antibody solutions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:485101. [PMID: 30418950 PMCID: PMC6693579 DOI: 10.1088/1361-648x/aae914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a theoretical study of colloidal stability of the model mixtures of monoclonal antibody molecules and non-adsorbing (no polymer-protein attraction) polymers. The antibodies are pictured as an assembly of seven hard spheres assuming a Y-like shape. Polymers present in the mixture are modeled as chain-like molecules having from 32 up to 128 monomers represented as hard spheres. We use Wertheim's thermodynamic perturbation theory to construct the two molecular species and to calculate measurable properties. The calculations are performed in the osmotic ensemble. In view that no direct attractive interaction is present in the model Hamiltonian, we only account for the entropic contribution to the phase equilibrium. We calculate chemical potentials and the equation of state for the model mixture to determine the liquid-liquid part of the phase diagram. We investigate how the critical antibody number density depends on the degree of polymerization and the bead size ratio of the polymer and protein components. The model mixture qualitatively correctly predicts some basic features of real systems. The effects of the model 'protein' geometry, that is the difference in results for the flexible Y-shaped protein versus the rigid spherical one, are also examined.
Collapse
Affiliation(s)
- Yu V Kalyuzhnyi
- Department of Chemistry, Faculty of Science, J E Purkinje University, 400 96 Ústí nad Labem, Czechia
| | | |
Collapse
|
30
|
Janc T, Vlachy V, Lukšič M. Calorimetric studies of interactions between low molecular weight salts and bovine serum albumin in water at pH values below and above the isoionic point. J Mol Liq 2018; 270:74-80. [PMID: 30872874 DOI: 10.1016/j.molliq.2017.10.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isothermal titration calorimetry was used to determine the temperature and salt concentration dependence of the enthalpy of mixing, Δmix H, of bovine serum albumin (BSA) in aqueous buffer solutions with several low molecular weight salts. Three buffers were used: acetate (pH = 4.0), MOPS (7.2), and borate (9.2). Since the isoionic point of BSA is at pI ≈ 4.7, the net charge of BSA in acetate buffer was positive (≈ +20), while in the other two buffer solutions it was negative (≈ -15 in MOPS and ≈ -25 in borate). The majority of the recorded heat effects were exothermic, while only at pH = 9.2 a weak endothermic effect upon mixing BSA with LiCl, NaCl, and KCl was observed. For all buffer solutions the absolute values of Δmix H of sodium salts followed the order: NaCl < NaBr < NaNO3 < NaI < NaSCN, which is the reverse Hofmeister series for anions. The magnitude of the effects was the largest in acetate buffer and decreased with an increasing pH value of the solution. While the effect of varying the anion of the added salts was strongly pronounced at all pH values, the effect of the cation (LiCl, NaCl, KCl, RbCl and CsCl salts) was weak. The most interesting feature of the results obtained for pH > pI was the fact that Δmix H were considerably more sensitive to the anion (co-ion to the net BSA charge) than to the cation species. This indicated that anions interacted quite strongly with the BSA even at pH values where the net charge of the protein was negative. We showed that Δmix H at high addition of salts correlated well with the enthalpy of hydration of the corresponding salt anion. This finding suggested, consistently with some previous studies, that a part of the exothermic contribution to Δmix H originated from the hydration changes upon the protein-salt interaction. Theoretical analysis, based on the primitive model of highly asymmetric electrolyte solutions solved within the mean spherical approximation, was used to estimate Coulomb effects upon mixing.
Collapse
Affiliation(s)
- Tadeja Janc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Vojko Vlachy
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Miha Lukšič
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
Kastelic M, Dill KA, Kalyuzhnyi YV, Vlachy V. Controlling the viscosities of antibody solutions through control of their binding sites. J Mol Liq 2018; 270:234-242. [PMID: 30906093 PMCID: PMC6425977 DOI: 10.1016/j.molliq.2017.11.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
For biotechnological drugs, it is desirable to formulate antibody solutions with low viscosities. We go beyond previous colloid theories in treating protein-protein self-association of molecules that are antibody-shaped and flexible and have spatially specific binding sites. We consider interactions either through fragment antigen (Fab-Fab) or fragment crystalizable (Fab-Fc) binding. Wertheim's theory is adapted to compute the cluster-size distributions, viscosities, second virial coefficients, and Huggins coefficients, as functions of antibody concentration. We find that the aggregation properties of concentrated solutions can be anticipated from simpler-to-measure dilute solutions. A principal finding is that aggregation is controllable, in principle, through modifying the antibody itself, and not just the solution it is dissolved in. In particular: (i) monospecific antibodies having two identical Fab arms can form linear chains with intermediate viscosities. (ii) Bispecific antibodies having different Fab arms can, in some cases, only dimerize, having low viscosities. (iii) Arm-to-Fc binding allows for three binding partners, leading to networks and high viscosities.
Collapse
Affiliation(s)
- Miha Kastelic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology and Departments of Physics and Chemistry, Stony Brook University, Stony Brook, NY 11794
| | - Yura V. Kalyuzhnyi
- Institute for Condensed Matter Physics, Svientsitskii 1, 79011 Lviv, Ukraine
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Blanco MA, Hatch HW, Curtis JE, Shen VK. A methodology to calculate small-angle scattering profiles of macromolecular solutions from molecular simulations in the grand-canonical ensemble. J Chem Phys 2018; 149:084203. [PMID: 30193476 DOI: 10.1063/1.5029274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The theoretical framework to evaluate small-angle scattering (SAS) profiles for multi-component macromolecular solutions is re-examined from the standpoint of molecular simulations in the grand-canonical ensemble, where the chemical potentials of all species in solution are fixed. This statistical mechanical ensemble resembles more closely scattering experiments, capturing concentration fluctuations that arise from the exchange of molecules between the scattering volume and the bulk solution. The resulting grand-canonical expression relates scattering intensities to the different intra- and intermolecular pair distribution functions, as well as to the distribution of molecular concentrations on the scattering volume. This formulation represents a generalized expression that encompasses most of the existing methods to evaluate SAS profiles from molecular simulations. The grand-canonical SAS methodology is probed for a series of different implicit-solvent, homogeneous systems at conditions ranging from dilute to concentrated. These systems consist of spherical colloids, dumbbell particles, and highly flexible polymer chains. Comparison of the resulting SAS curves against classical methodologies based on either theoretical approaches or canonical simulations (i.e., at a fixed number of molecules) shows equivalence between the different scattering intensities so long as interactions between molecules are net repulsive or weakly attractive. On the other hand, for strongly attractive interactions, grand-canonical SAS profiles deviate in the low- and intermediate-q range from those calculated in a canonical ensemble. Such differences are due to the distribution of molecules becoming asymmetric, which yields a higher contribution from configurations with molecular concentrations larger than the nominal value. Additionally, for flexible systems, explicit discrimination between intra- and inter-molecular SAS contributions permits the implementation of model-free, structural analysis such as Guinier's plots at high molecular concentrations, beyond what the traditional limits are for such analysis.
Collapse
Affiliation(s)
- Marco A Blanco
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Harold W Hatch
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vincent K Shen
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
33
|
In Silico Prediction of Diffusion Interaction Parameter (kD), a Key Indicator of Antibody Solution Behaviors. Pharm Res 2018; 35:193. [DOI: 10.1007/s11095-018-2466-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
34
|
Kastelic M, Vlachy V. Theory for the Liquid-Liquid Phase Separation in Aqueous Antibody Solutions. J Phys Chem B 2018; 122:5400-5408. [PMID: 29338267 PMCID: PMC5980754 DOI: 10.1021/acs.jpcb.7b11458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study presents the theory for liquid-liquid phase separation for systems of molecules modeling monoclonal antibodies. Individual molecule is depicted as an assembly of seven hard spheres, organized to mimic the Y-shaped antibody. We consider the antibody-antibody interactions either through Fab, Fab' (two Fab fragments may be different), or Fc domain. Interaction between these three domains of the molecule (hereafter denoted as A, B, and C, respectively) is modeled by a short-range square-well attraction. To obtain numerical results for the model under study, we adapt Wertheim's thermodynamic perturbation theory. We use this model to calculate the liquid-liquid phase separation curve and the second virial coefficient B2. Various interaction scenarios are examined to see how the strength of the site-site interactions and their range shape the coexistence curve. In the asymmetric case, where an attraction between two sites is favored and the interaction energies for the other sites kept constant, critical temperature first increases and than strongly decreases. Some more microscopic information, for example, the probability for the particular two sites to be connected, has been calculated. Analysis of the experimental liquid-liquid phase diagrams, obtained from literature, is presented. In addition, we calculate the second virial coefficient under conditions leading to the liquid-liquid phase separation and present this quantity on the graph B2 versus protein concentration.
Collapse
Affiliation(s)
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Hong T, Iwashita K, Shiraki K. Viscosity Control of Protein Solution by Small Solutes: A Review. Curr Protein Pept Sci 2018; 19:746-758. [PMID: 29237380 PMCID: PMC6182935 DOI: 10.2174/1389203719666171213114919] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
Viscosity of protein solution is one of the most troublesome issues for the high-concentration formulation of protein drugs. In this review, we summarize the practical methods that suppress the viscosity of protein solution using small molecular additives. The small amount of salts decreases the viscosity that results from electrostatic repulsion and attraction. The chaotrope suppresses the hydrophobic attraction and cluster formation, which can lower the solution viscosity. Arginine hydrochloride (ArgHCl) also suppresses the solution viscosity due to the hydrophobic and aromatic interactions between protein molecules. The small molecular additives are the simplest resolution of the high viscosity of protein solution as well as understanding of the primary cause in complex phenomena of protein interactions.
Collapse
Affiliation(s)
- Taehun Hong
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| | - Kazuki Iwashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki305-8573, Japan
| |
Collapse
|
36
|
Studies of anionic dendrimer adsorption mechanism on the zirconium(IV) oxide surface – Electrokinetic and thermal properties of nanosized composites. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Rotational diffusion of magnetic nanoparticles in protein solutions. J Colloid Interface Sci 2017; 506:393-402. [DOI: 10.1016/j.jcis.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
|
38
|
|
39
|
Laber JR, Dear BJ, Martins ML, Jackson DE, DiVenere A, Gollihar JD, Ellington AD, Truskett TM, Johnston KP, Maynard JA. Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration. Mol Pharm 2017; 14:3269-3280. [PMID: 28870080 DOI: 10.1021/acs.molpharmaceut.7b00322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein stability is central to combatting protein aggregation diseases and developing new protein therapeutics. At the high concentrations often present in biological systems, purified proteins can exhibit undesirable high solution viscosities and poor solubilities mediated by short-range electrostatic and hydrophobic protein-protein interactions. The interplay between protein amino acid sequence, protein structure, and solvent conditions to minimize protein-protein interactions is key to designing well-behaved pharmaceutical proteins. However, theoretical approaches have yet to yield a general framework to address these problems. Here, we analyzed the high concentration behavior of superfolder GFP (sfGFP) and two supercharged sfGFP variants engineered to have formal charges of -18 or +15. Under low cosolute conditions, sfGFP and the -18 variant formed a gel or phase separated at ∼10 mg/mL. Under conditions that screen surface charges, including formulations with high histidine or high NaCl concentrations, all three variants attained concentrations up to 250 mg/mL with moderate viscosities. Moreover, all three variants exhibited very similar viscosity-concentration profiles over this range. This effect was not mimicked by high sugar concentrations that exert excluded-volume effects without shielding charge. Collectively, these data demonstrate that charge shielding neutralizes not only long-range electrostatic interactions but also, surprisingly, short-range electrostatic effects due to surface charge anisotropy. This work shows that supercharged sfGFP behavior under high ionic strength is largely determined by particle geometry, a conclusion that is supported by colloid models and may be applicable to pharmaceutically relevant proteins.
Collapse
Affiliation(s)
- Joshua R Laber
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Barton J Dear
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Matheus L Martins
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Devin E Jackson
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Andrea DiVenere
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jimmy D Gollihar
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Andrew D Ellington
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Thomas M Truskett
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Keith P Johnston
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer A Maynard
- Departments of †Chemical Engineering and ‡Molecular Biosciences, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
40
|
Corbett D, Hebditch M, Keeling R, Ke P, Ekizoglou S, Sarangapani P, Pathak J, Van Der Walle CF, Uddin S, Baldock C, Avendaño C, Curtis RA. Coarse-Grained Modeling of Antibodies from Small-Angle Scattering Profiles. J Phys Chem B 2017; 121:8276-8290. [DOI: 10.1021/acs.jpcb.7b04621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Corbett
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Max Hebditch
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Rose Keeling
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Peng Ke
- Formulation
Sciences, MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Sofia Ekizoglou
- Formulation
Sciences, MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Prasad Sarangapani
- Regeneron Pharmaceuticals, 777
Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Jai Pathak
- Vaccine
Research Center, National Institute of Health, 9 West Watkins Mill Road, Suite
250, Gaithersburg, Maryland 20878, United States
| | | | - Shahid Uddin
- Formulation
Sciences, MedImmune Ltd, Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, U.K
| | - Clair Baldock
- Division
of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K
| | - Carlos Avendaño
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| | - Robin A. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester, M13 9PL, U.K
| |
Collapse
|
41
|
Response to Comment to the Editor. Biophys J 2017; 113:755-756. [PMID: 28793229 DOI: 10.1016/j.bpj.2017.06.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/20/2022] Open
|
42
|
Challenges in Predicting Protein-Protein Interactions from Measurements of Molecular Diffusivity. Biophys J 2017; 111:1831-1842. [PMID: 27806265 DOI: 10.1016/j.bpj.2016.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 01/11/2023] Open
Abstract
Dynamic light scattering can be used to measure the diffusivity of a protein within a formulation. The dependence of molecular diffusivity on protein concentration (traditionally expressed in terms of the interaction parameter kD) is often used to infer whether protein-protein interactions are repulsive or attractive, resulting in solutions that are colloidally stable or unstable, respectively. However, a number of factors unrelated to intermolecular forces can also impact protein diffusion, complicating this interpretation. Here, we investigate the influence of multicomponent diffusion in a ternary protein-salt-water system on protein diffusion and kD in the context of Nernst-Planck theory. This analysis demonstrates that large changes in protein diffusivity with protein concentration can result even for hard-sphere systems in the absence of protein-protein interactions. In addition, we show that dynamic light scattering measurements of diffusivity made at low ionic strength cannot be reliably used to detect protein conformational changes. We recommend comparing experimentally determined kD values to theoretically predicted excluded-volume contributions, which will allow a more accurate assessment of protein-protein interactions.
Collapse
|
43
|
Da Vela S, Roosen-Runge F, Skoda MWA, Jacobs RMJ, Seydel T, Frielinghaus H, Sztucki M, Schweins R, Zhang F, Schreiber F. Effective Interactions and Colloidal Stability of Bovine γ-Globulin in Solution. J Phys Chem B 2017; 121:5759-5769. [DOI: 10.1021/acs.jpcb.7b03510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefano Da Vela
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Felix Roosen-Runge
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Maximilian W. A. Skoda
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Robert M. J. Jacobs
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tilo Seydel
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Henrich Frielinghaus
- Jülich
Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (JCNS at
MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching D-85747, Germany
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF), CS 40220, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38043, France
| | - Ralf Schweins
- Institut Max von Laue − Paul Langevin (ILL), CS 20156, 71 Avenue des Martyrs, Grenoble Cedex 9, F-38042, France
| | - Fajun Zhang
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen D-72076, Germany
| |
Collapse
|
44
|
Zhang Z, Liu Y. Recent progresses of understanding the viscosity of concentrated protein solutions. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Kalyuzhnyi YV, Vlachy V. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions. J Chem Phys 2017; 144:215101. [PMID: 27276970 DOI: 10.1063/1.4953067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein-protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim's associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained.
Collapse
Affiliation(s)
- Yuriy V Kalyuzhnyi
- Institute for Condensed Matter Physics, NASU, Svientsitskoho 1, 79011 Lviv, Ukraine
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Tomar DS, Li L, Broulidakis MP, Luksha NG, Burns CT, Singh SK, Kumar S. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs 2017; 9:476-489. [PMID: 28125318 DOI: 10.1080/19420862.2017.1285479] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence-structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on VH, VL, and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development.
Collapse
Affiliation(s)
- Dheeraj S Tomar
- a Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Chesterfield , MO , USA
| | - Li Li
- b Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Andover , MA , USA
| | - Matthew P Broulidakis
- b Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Andover , MA , USA
| | - Nicholas G Luksha
- b Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Andover , MA , USA
| | - Christopher T Burns
- b Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Andover , MA , USA
| | - Satish K Singh
- a Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Chesterfield , MO , USA
| | - Sandeep Kumar
- a Biotherapeutics Pharmaceutical Sciences Research and Development, Pfizer Inc. , Chesterfield , MO , USA
| |
Collapse
|
47
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|
48
|
Ghosh R, Calero-Rubio C, Saluja A, Roberts CJ. Relating Protein-Protein Interactions and Aggregation Rates From Low to High Concentrations. J Pharm Sci 2016; 105:1086-96. [PMID: 26928400 DOI: 10.1016/j.xphs.2016.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022]
Abstract
At low protein concentrations (c2), non-native protein aggregation rates are known to be sensitive to changes in conformational stability and "weak" or "colloidal" protein-protein interactions. Protein-protein interactions are also known to be strong functions of c2. In the present work, protein-protein interactions and rates of aggregation were quantified systematically for a monoclonal antibody (MAb) across a broad range of c2 at pH 5.1 and 6.5, with or without 5 wt/wt % sucrose or 100 mM NaCl present. Aggregation rates were determined from initial-rate analysis with size-exclusion chromatography, and interactions were quantified with static and dynamic laser light scattering. A number of hypotheses were tested regarding whether changes in protein-protein interactions can be predictive of changes in aggregation rates versus c2. Hypotheses were based on (i) changes in thermodynamic activity; (ii) statistical mechanical fluctuation theory; and (iii) surface-contact probabilities. Arguments based on (i) and (ii) were qualitatively inconsistent with experimental rates and scattering. Hypothesis (iii) was reasonably successful and resulted in a semiquantitative correlation between rates and protein-protein interactions across almost 2 orders of magnitude in c2. However, (iii) requires one to assume that the concentration-dependent protein-protein Kirkwood-Buff integral is a reasonable surrogate for contact probabilities.
Collapse
Affiliation(s)
- Ranendu Ghosh
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Cesar Calero-Rubio
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Atul Saluja
- Department of Drug Product Science and Technology, Bristol-Myers Squibb, New Brunswick, New Jersey 08901
| | - Christopher J Roberts
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716.
| |
Collapse
|
49
|
Castellanos MM, Clark NJ, Watson MC, Krueger S, McAuley A, Curtis JE. Role of Molecular Flexibility and Colloidal Descriptions of Proteins in Crowded Environments from Small-Angle Scattering. J Phys Chem B 2016; 120:12511-12518. [DOI: 10.1021/acs.jpcb.6b10637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Monica Castellanos
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Nicholas J. Clark
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Max C. Watson
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Susan Krueger
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Arnold McAuley
- Department
of Drug Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Joseph E. Curtis
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
50
|
Sarangapani PS, Weaver J, Parupudi A, Besong TM, Adams GG, Harding SE, Manikwar P, Castellanos MM, Bishop SM, Pathak JA. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions. J Pharm Sci 2016; 105:3496-3506. [DOI: 10.1016/j.xphs.2016.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022]
|