1
|
Rajput S, Panigrahy S, Nayar D. In Silico View of Crowding: Biomolecular Processes to Nanomaterial Design. ACS OMEGA 2024; 9:29953-29965. [PMID: 39035939 PMCID: PMC11256109 DOI: 10.1021/acsomega.4c03344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
It is widely accepted that deciphering biomolecular structure and function requires going beyond the single-molecule or single-complex paradigm. The densely packed macromolecules, cosolutes, and metabolites in the living cell impose crowding effects on the biomolecular structure and dynamics that need to be accounted for. Molecular simulations have proven to be a powerful tool to advance the current molecular-level understanding of such a highly concentrated, complex milieu. This Mini-Review focuses on summarizing the understanding achieved so far for the effects of crowding on biomolecular processes using computational methods, along with highlighting a new direction in employing crowding as a tool for tunable nanomaterial design. The two schools of thought that form the pillars of the current understanding of crowding effects are discussed. The investigation of crowded solutions using physics-based models that encompass different time and length scales to mimic the intracellular environment are described. The limitations and challenges faced by the current models and simulation methods are addressed, highlighting the gaps to be filled for better agreement with experiments. Crowding can also act as an effective tool to modulate the structure-property-function relationships of nanomaterials, leading to the development of novel functional materials. A few recent studies, mostly experimental, have been summarized in this direction. The Mini-Review concludes with an outlook for future developments in this field in order to enable accurate mimicking of the intracellular environment using simulations and to bridge the gap between biological processes and nanomaterial design.
Collapse
Affiliation(s)
- Satyendra Rajput
- Department of Materials Science
and Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
| | - Sibasankar Panigrahy
- Department of Materials Science
and Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
| | - Divya Nayar
- Department of Materials Science
and Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Chang MH, Lavrentovich MO, Männik J. Differentiating the roles of proteins and polysomes in nucleoid size homeostasis in Escherichia coli. Biophys J 2024; 123:1435-1448. [PMID: 37974398 PMCID: PMC11163298 DOI: 10.1016/j.bpj.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
A defining feature of the bacterial cytosolic interior is a distinct membrane-less organelle, the nucleoid, that contains the chromosomal DNA. Although increasing experimental evidence indicates that macromolecular crowding is the dominant mechanism for nucleoid formation, it has remained unclear which crowders control nucleoid volume. It is commonly assumed that polyribosomes play a dominant role, yet the volume fraction of soluble proteins in the cytosol is comparable with that of polyribosomes. Here, we develop a free energy-based model for the cytosolic interior of a bacterial cell to distinguish contributions arising from polyribosomes and cytosolic proteins in nucleoid volume control. The parameters of the model are determined from the existing experimental data. We show that, while the polysomes establish the existence of the nucleoid as a distinct phase, the proteins control the nucleoid volume in physiologically relevant conditions. Our model explains experimental findings in Escherichia coli that the nucleoid compaction curves in osmotic shock measurements do not depend on cell growth rate and that dissociation of polysomes in slow growth rates does not lead to significant nucleoid expansion, while the nucleoid phase disappears in fastest growth rates. Furthermore, the model predicts a cross-over in the exclusion of crowders by their linear dimensions from the nucleoid phase: below the cross-over of 30-50 nm, the concentration of crowders in the nucleoid phase decreases linearly as a function of the crowder diameter, while decreasing exponentially above the cross-over size. Our work points to the possibility that bacterial cells maintain nucleoid size and protein concentration homeostasis via feedback in which protein concentration controls nucleoid dimensions and the nucleoid dimensions control protein synthesis rate.
Collapse
Affiliation(s)
- Mu-Hung Chang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee
| | - Maxim O Lavrentovich
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee; Department of Earth, Environment, and Physics, Worcester State University, Worcester, Massachusetts.
| | - Jaan Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
3
|
Chaboche Q, Campos-Villalobos G, Giunta G, Dijkstra M, Cosentino Lagomarsino M, Scolari VF. A mean-field theory for predicting single polymer collapse induced by neutral crowders. SOFT MATTER 2024; 20:3271-3282. [PMID: 38456237 DOI: 10.1039/d3sm01522j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Macromolecular crowding can induce the collapse of a single long polymer into a globular form due to depletion forces of entropic nature. This phenomenon has been shown to play a significant role in compacting the genome within the bacterium Escherichia coli into a well-defined region of the cell known as the nucleoid. Motivated by the biological significance of this process, numerous theoretical and computational studies have searched for the primary determinants of the behavior of polymer-crowder phases. However, our understanding of this process remains incomplete and there is debate on a quantitatively unified description. In particular, different simulation studies with explicit crowders have proposed different order parameters as potential predictors for the collapse transition. In this work, we present a comprehensive analysis of published simulation data obtained from different sources. Based on the common behavior we find in this data, we develop a unified phenomenological model that we show to be predictive. Finally, to further validate the accuracy of the model, we conduct new simulations on polymers of various sizes, and investigate the role of jamming of the crowders.
Collapse
Affiliation(s)
- Quentin Chaboche
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
- IFOM ETS, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
| | - Gerardo Campos-Villalobos
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Giuliana Giunta
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marco Cosentino Lagomarsino
- IFOM ETS, The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Physics Department, University of Milan, and INFN, Milan, Italy
| | - Vittore F Scolari
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.
| |
Collapse
|
4
|
Wei J, Xue Y, Liu Y, Tian H, Shao Y, Gao YQ. Steric repulsion introduced by loop constraints modulates the microphase separation of chromatins. J Chem Phys 2024; 160:054904. [PMID: 38341710 DOI: 10.1063/5.0189692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Within the confines of a densely populated cell nucleus, chromatin undergoes intricate folding, forming loops, domains, and compartments under the governance of topological constraints and phase separation. This coordinated process inevitably introduces interference between different folding strategies. In this study, we model interphase chromatins as block copolymers with hetero-hierarchical loops within a confined system. Employing dissipative particle dynamics simulations and scaling analysis, we aim to explain how the structure and distribution of loop domains modulate the microphase separation of chromatins. Our results highlight the correlation between the microphase separation of the copolymer and the length, heterogeneity, and hierarchically nested levels of the loop domains. This correlation arises from steric repulsion intrinsic to loop domains. The steric repulsion induces variations in chain stiffness (including local orientation correlations and the persistence length), thereby influencing the degree of phase separation. Through simulations of block copolymers with distinct groups of hetero-hierarchical loop anchors, we successfully reproduce changes in phase separation across diverse cell lines, under fixed interaction parameters. These findings, in qualitative alignment with Hi-C data, suggest that the variations of loop constraints alone possess the capacity to regulate higher-order structures and the gene expressions of interphase chromatins.
Collapse
Affiliation(s)
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Qin Gao
- Changping Laboratory, Beijing 102206, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, 5F, No. 9 Duxue Rd., Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
5
|
Chauhan G, Simpson ML, Abel SM. Adsorption of semiflexible polymers in crowded environments. J Chem Phys 2021; 155:034904. [PMID: 34293868 DOI: 10.1063/5.0054797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Macromolecular crowding is a feature of cellular and cell-free systems that, through depletion effects, can impact the interactions of semiflexible biopolymers with surfaces. In this work, we use computer simulations to study crowding-induced adsorption of semiflexible polymers on otherwise repulsive surfaces. Crowding particles are modeled explicitly, and we investigate the interplay between the bending stiffness of the polymer and the volume fraction and size of crowding particles. Adsorption to flat surfaces is promoted by stiffer polymers, smaller crowding particles, and larger volume fractions of crowders. We characterize transitions from non-adsorbed to partially and strongly adsorbed states as a function of bending stiffness. The crowding-induced transitions occur at smaller values of the bending stiffness as the volume fraction of crowders increases. Concomitant effects on the size and shape of the polymer are reflected by crowding- and stiffness-dependent changes to the radius of gyration. For various polymer lengths, we identify a critical crowding fraction for adsorption and analyze its scaling behavior in terms of polymer stiffness. We also consider crowding-induced adsorption in spherical confinement and identify a regime in which increasing the bending stiffness induces desorption. The results of our simulations shed light on the interplay of crowding and bending stiffness on the spatial organization of biopolymers in encapsulated cellular and cell-free systems.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| | - Michael L Simpson
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
6
|
Jung Y, Ha BY. Collapse transition of a heterogeneous polymer in a crowded medium. J Chem Phys 2021; 155:054902. [PMID: 34364346 DOI: 10.1063/5.0056446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long chain molecules can be entropically compacted in a crowded medium. We study the compaction transition of a heterogeneous polymer with ring topology by crowding effects in a free or confined space. For this, we use molecular dynamics simulations in which the effects of crowders are taken into account through effective interactions between chain segments. Our parameter choices are inspired by the Escherichia coli chromosome. The polymer consists of small and big monomers; the big monomers dispersed along the backbone are to mimic the binding of RNA polymerases. Our results show that the compaction transition is a two-step process: initial compaction induced by the association (clustering) of big monomers followed by a gradual overall compaction. They also indicate that cylindrical confinement makes the initial transition more effective; for representative parameter choices, the initial compaction accounts for about 60% reduction in the chain size. Our simulation results support the view that crowding promotes clustering of active transcription units into transcription factories.
Collapse
Affiliation(s)
- Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon 34141, South Korea
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
8
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
9
|
Mesoscale Simulation of Bacterial Chromosome and Cytoplasmic Nanoparticles in Confinement. ENTROPY 2021; 23:e23050542. [PMID: 33924872 PMCID: PMC8146307 DOI: 10.3390/e23050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
In this study we investigated, using a simple polymer model of bacterial chromosome, the subdiffusive behaviors of both cytoplasmic particles and various loci in different cell wall confinements. Non-Gaussian subdiffusion of cytoplasmic particles as well as loci were obtained in our Langevin dynamic simulations, which agrees with fluorescence microscope observations. The effects of cytoplasmic particle size, locus position, confinement geometry, and density on motions of particles and loci were examined systematically. It is demonstrated that the cytoplasmic subdiffusion can largely be attributed to the mechanical properties of bacterial chromosomes rather than the viscoelasticity of cytoplasm. Due to the randomly positioned bacterial chromosome segments, the surrounding environment for both particle and loci is heterogeneous. Therefore, the exponent characterizing the subdiffusion of cytoplasmic particle/loci as well as Laplace displacement distributions of particle/loci can be reproduced by this simple model. Nevertheless, this bacterial chromosome model cannot explain the different responses of cytoplasmic particles and loci to external compression exerted on the bacterial cell wall, which suggests that the nonequilibrium activity, e.g., metabolic reactions, play an important role in cytoplasmic subdiffusion.
Collapse
|
10
|
Chauhan G, Simpson ML, Abel SM. Crowding-induced interactions of ring polymers. SOFT MATTER 2021; 17:16-23. [PMID: 33155586 DOI: 10.1039/d0sm01847c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Macromolecular crowding and the presence of surfaces can significantly impact the spatial organization of biopolymers. While the importance of crowding-induced depletion interactions in biology has been recognized, much remains to be understood about the effect of crowding on biopolymers such as DNA plasmids. A fundamental problem highlighted by recent experiments is to characterize the impact of crowding on polymer-polymer and polymer-surface interactions. Motivated by the need for quantitative insight, we studied flexible ring polymers in crowded environments using Langevin dynamics simulations. The simulations demonstrated that crowding can lead to compaction of isolated ring polymers and enhanced interactions between two otherwise repulsive polymers. Using umbrella sampling, we determined the potential of mean force (PMF) between two ring polymers as a function of their separation distance at different volume fractions of crowding particles, φ. An effective attraction emerged at φ≈ 0.4, which is similar to the degree of crowding in cells. Analogous simulations showed that crowding can lead to strong adsorption of a ring polymer to a wall, with an effective attraction to the wall emerging at a smaller volume fraction of crowders (φ≈ 0.2). Our results reveal the magnitude of depletion interactions in a biologically-inspired model and highlight how crowding can be used to tune interactions in both cellular and cell-free systems.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | |
Collapse
|
11
|
Chromosome Segregation in Bacillus subtilis Follows an Overall Pattern of Linear Movement and Is Highly Robust against Cell Cycle Perturbations. mSphere 2020; 5:5/3/e00255-20. [PMID: 32554717 PMCID: PMC7300352 DOI: 10.1128/msphere.00255-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle. Although several proteins have been identified that facilitate chromosome segregation in bacteria, no clear analogue of the mitotic machinery in eukaryotic cells has been identified. In order to investigate if recognizable patterns of segregation exist during the cell cycle, we tracked the segregation of duplicated origin regions in Bacillus subtilis for 60 min in the fastest practically achievable resolution, achieving 10-s intervals. We found that while separation occurred in random patterns, often including backwards movement, overall, segregation of loci near the origins of replication was linear for the entire cell cycle. Thus, the process of partitioning can be best described as directed motion. Simulations with entropy-driven separation of polymers synthesized by two polymerases show sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, showing that for Bacillus, segregation patterns can be modeled based on entropic forces. To test if obstacles for replication forks lead to an alteration of the partitioning pattern, we challenged cells with chemicals inducing DNA damage or blocking of topoisomerase activity. Both treatments led to a moderate slowing down of separation, but linear segregation was retained, showing that chromosome segregation is highly robust against cell cycle perturbation. IMPORTANCE We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle.
Collapse
|
12
|
Yang D, Männik J, Retterer ST, Männik J. The effects of polydisperse crowders on the compaction of the Escherichia coli nucleoid. Mol Microbiol 2020; 113:1022-1037. [PMID: 31961016 DOI: 10.1111/mmi.14467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023]
Abstract
DNA binding proteins, supercoiling, macromolecular crowders, and transient DNA attachments to the cell membrane have all been implicated in the organization of the bacterial chromosome. However, it is unclear what role these factors play in compacting the bacterial DNA into a distinct organelle-like entity, the nucleoid. By analyzing the effects of osmotic shock and mechanical squeezing on Escherichia coli, we show that macromolecular crowders play a dominant role in the compaction of the DNA into the nucleoid. We find that a 30% increase in the crowder concentration from physiological levels leads to a three-fold decrease in the nucleoid's volume. The compaction is anisotropic, being higher along the long axes of the cell at low crowding levels. At higher crowding levels, the nucleoid becomes spherical, and its compressibility decreases significantly. Furthermore, we find that the compressibility of the nucleoid is not significantly affected by cell growth rates and by prior treatment with rifampicin. The latter results point out that in addition to poly ribosomes, soluble cytoplasmic proteins have a significant contribution in determining the size of the nucleoid. The contribution of poly ribosomes dominates at faster and soluble proteins at slower growth rates.
Collapse
Affiliation(s)
- Da Yang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA
| | - Jaana Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA.,Department of Biochemistry, and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jaan Männik
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
13
|
Rupprecht N, Vural DC. Depletion force between disordered linear macromolecules. Phys Rev E 2020; 101:022607. [PMID: 32168718 DOI: 10.1103/physreve.101.022607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
When two macromolecules come very near in a fluid, the surrounding molecules, having finite volume, are less likely to get in between. This leads to a pressure difference manifesting as an entropic attraction, called depletion force. Here we calculate the density profile of liquid molecules surrounding a disordered rigid macromolecules modeled as a random arrangement of hard spheres on a linear backbone. We analytically determine the position dependence of the depletion force between two such disordered molecules by calculating the free energy of the system. We then use molecular dynamics simulations to obtain the depletion force between stiff disordered polymers as well as flexible ones and compare the two against each other. We also show how the disorder averaging can be handled starting from the inhomogenous reference interaction site model equations.
Collapse
Affiliation(s)
- Nathaniel Rupprecht
- Department of Physics, University of Notre Dame, South Bend, Indiana 46556, USA
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, South Bend, Indiana 46556, USA
| |
Collapse
|
14
|
Tripathi K, Menon GI, Vemparala S. Confined crowded polymers near attractive surfaces. J Chem Phys 2019; 151:244901. [PMID: 31893876 DOI: 10.1063/1.5115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results from molecular dynamics simulations of a spherically confined neutral polymer in the presence of crowding particles, studying polymer shapes and conformations as a function of the strength of the attraction to the confining wall, solvent quality, and the density of crowders. The conformations of the polymer under good solvent conditions are weakly dependent on crowder particle density, even when the polymer is strongly confined. In contrast, under poor solvent conditions, when the polymer assumes a collapsed conformation when unconfined, it can exhibit transitions to two different adsorbed phases, when either the interaction with the wall or the density of crowder particles is changed. One such transition involves a desorbed collapsed phase change to an adsorbed extended phase as the attraction of the polymer towards the confining wall is increased. Such an adsorbed extended phase can exhibit a second transition to an ordered adsorbed collapsed phase as the crowder particle density is increased. The ordered adsorbed collapsed phase of the polymer differs significantly in its structure from the desorbed collapsed phase. We revisit the earlier understanding of the adsorption of confined polymers on attractive surfaces in light of our results.
Collapse
Affiliation(s)
- Kamal Tripathi
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Gautam I Menon
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
15
|
Floc'h K, Lacroix F, Servant P, Wong YS, Kleman JP, Bourgeois D, Timmins J. Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans. Nat Commun 2019; 10:3815. [PMID: 31444361 PMCID: PMC6707255 DOI: 10.1038/s41467-019-11725-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D. radiodurans undergoes coordinated morphological changes at both the cellular and nucleoid level as it progresses through its cell cycle. The nucleoid is highly condensed, but also surprisingly dynamic, adopting multiple configurations and presenting an unusual arrangement in which oriC loci are radially distributed around clustered ter sites maintained at the cell centre. Single-particle tracking and fluorescence recovery after photobleaching studies of the histone-like HU protein suggest that its loose binding to DNA may contribute to this remarkable plasticity. These findings demonstrate that nucleoid organization is complex and tightly coupled to cell cycle progression in this organism.
Collapse
Affiliation(s)
- Kevin Floc'h
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | | | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
| |
Collapse
|
16
|
Bian Y, Yan R, Li P, Zhao N. Unusual crowding-induced chain looping kinetics in hard-sphere fluids: a contrastive study with polymer solutions. SOFT MATTER 2019; 15:4976-4988. [PMID: 31173026 DOI: 10.1039/c9sm00400a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A theoretical framework is developed to investigate the looping kinetics of a chain in hard-sphere (HS) fluids, based on a generalized Smoluchowski diffusion-reaction equation. A contrastive study with polymer solutions is performed. The crowding-associated effective viscosity and collapse effects are properly taken into account, which obey different scaling relations in HS and polymer fluids. We examine the dependence of the looping time on both concentration and size of crowders, demonstrating unusual and distinct discrepancies in the two crowded media. Firstly, in the solution of large polymers, the looping rate grows monotonically with polymer concentration. On the other hand, in the solution of large HSs, a caging regime can be observed, where the looping time tends to the value in the absence of crowders. Secondly, polymers in moderate size generally impede chain looping due to the enhanced viscosity. However, in HS fluids, the looping time exhibits a rather complicated variation with increasing HS size. We show a possible mechanism where in the case of small crowders with a relatively strong compaction in the probed chain, the looping kinetics can be facilitated. As the crowder size increases, the collapse effect is reduced and looping is dominated by viscosity-induced inhibition. Simultaneously, our theory rationalizes another possibility of the mechanism observed by recent simulation work. We conclude that the looping kinetics in specific systems actually should be governed by the critical competition between the two crowding factors. By giving reasonable measurements of effective viscosity and collapse, our theoretical framework can provide a unified strategy to analyze crowding effects on the looping rate in a systematic manner.
Collapse
Affiliation(s)
- Yukun Bian
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | | | | | | |
Collapse
|
17
|
Chen A, Zhao N. Comparative study of the crowding-induced collapse effect in hard-sphere, flexible polymer and rod-like polymer systems. Phys Chem Chem Phys 2019; 21:12335-12345. [DOI: 10.1039/c9cp01731c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic Langevin simulation is performed to study the crowding-induced collapse effect on a probed chain in three typical systems: hard sphere (HS), flexible polymer and rod-like polymer.
Collapse
Affiliation(s)
- Anpu Chen
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Nanrong Zhao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
18
|
Nehring A, Shendruk TN, de Haan HW. Morphology of depletant-induced erythrocyte aggregates. SOFT MATTER 2018; 14:8160-8171. [PMID: 30260361 DOI: 10.1039/c8sm01026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Red blood cells suspended in quiescent plasma tend to aggregate into multicellular assemblages, including linearly stacked columnar rouleaux, which can reversibly form more complex clusters or branching networks. While these aggregates play an essential role in establishing hemorheological and pathological properties, the biophysics behind their self-assembly into dynamic mesoscopic structures remains under-explored. We employ coarse-grained molecular simulations to model low-hematocrit erythrocytes subject to short-range implicit depletion forces, and demonstrate not only that depletion interactions are sufficient to account for a sudden dispersion-aggregate transition, but also that the volume fraction of depletant macromolecules controls small aggregate morphology. We observe a sudden transition from a dispersion to a linear column rouleau, followed by a slow emergence of disorderly amorphous clusters of many short rouleaux at larger volume fractions. This work demonstrates how discocyte topology and short-range, non-specific, physical interactions are sufficient to self-assemble erythrocytes into various aggregate structures, with markedly different morphologies and biomedical consequences.
Collapse
Affiliation(s)
- Austin Nehring
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| | - Tyler N Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Hendrick W de Haan
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| |
Collapse
|
19
|
Scutigliani EM, Scholl ER, Grootemaat AE, Khanal S, Kochan JA, Krawczyk PM, Reits EA, Garzan A, Ngo HX, Green KD, Garneau-Tsodikova S, Ruijter JM, van Veen HA, van der Wel NN. Interfering With DNA Decondensation as a Strategy Against Mycobacteria. Front Microbiol 2018; 9:2034. [PMID: 30233521 PMCID: PMC6135046 DOI: 10.3389/fmicb.2018.02034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.
Collapse
Affiliation(s)
- Enzo M Scutigliani
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Edwin R Scholl
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Sadhana Khanal
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Jakub A Kochan
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Eric A Reits
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Jan M Ruijter
- Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Henk A van Veen
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
20
|
Dahlke K, Sing CE. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins. J Chem Phys 2018; 148:084902. [PMID: 29495783 DOI: 10.1063/1.5016177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Collapse
Affiliation(s)
- K Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - C E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
21
|
Pereira MCF, Brackley CA, Lintuvuori JS, Marenduzzo D, Orlandini E. Entropic elasticity and dynamics of the bacterial chromosome: A simulation study. J Chem Phys 2018; 147:044908. [PMID: 28764377 DOI: 10.1063/1.4995992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We study the compression and extension dynamics of a DNA-like polymer interacting with non-DNA binding and DNA-binding proteins, by means of computer simulations. The geometry we consider is inspired by recent experiments probing the compressional elasticity of the bacterial nucleoid (DNA plus associated proteins), where DNA is confined into a cylindrical container and subjected to the action of a "piston"-a spherical bead to which an external force is applied. We quantify the effect of steric interactions (excluded volume) on the force-extension curves as the polymer is compressed. We find that non-DNA-binding proteins, even at low densities, exert an osmotic force which can be a lot larger than the entropic force exerted by the compressed DNA. The trends we observe are qualitatively robust with respect to changes in protein sizes and are similar for neutral and charged proteins (and DNA). We also quantify the dynamics of DNA expansion following removal of the "piston": while the expansion is well fitted by power laws, the apparent exponent depends on protein concentration and protein-DNA interaction in a significant way. We further highlight an interesting kinetic process which we observe during the expansion of DNA interacting with DNA-binding proteins when the interaction strength is intermediate: the proteins bind while the DNA is packaged by the compression force, but they "pop-off" one-by-one as the force is removed, leading to a slow unzipping kinetics. Finally, we quantify the importance of supercoiling, which is an important feature of bacterial DNA in vivo.
Collapse
Affiliation(s)
- M C F Pereira
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - C A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - J S Lintuvuori
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Universite Paris-Saclay, 91405 Orsay Cedex, France
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - E Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, Padova, 35131 PD, Italy
| |
Collapse
|
22
|
Erdel F, Rippe K. Formation of Chromatin Subcompartments by Phase Separation. Biophys J 2018; 114:2262-2270. [PMID: 29628210 DOI: 10.1016/j.bpj.2018.03.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022] Open
Abstract
Chromatin is partitioned on multiple length scales into subcompartments that differ from each other with respect to their molecular composition and biological function. It is a key question how these compartments can form even though diffusion constantly mixes the nuclear interior and rapidly balances concentration gradients of soluble nuclear components. Different biophysical concepts are currently used to explain the formation of "chromatin bodies" in a self-organizing manner and without consuming energy. They rationalize how soluble protein factors that are dissolved in the liquid nuclear phase, the nucleoplasm, bind and organize transcriptionally active or silenced chromatin domains. In addition to cooperative binding of proteins to a preformed chromatin structure, two different mechanisms for the formation of phase-separated chromatin subcompartments have been proposed. One is based on bridging proteins that cross-link polymer segments with particular properties. Bridging can induce a collapse of the nucleosome chain and associated factors into an ordered globular phase. The other mechanism is based on multivalent interactions among soluble molecules that bind to chromatin. These interactions can induce liquid-liquid phase separation, which drives the assembly of liquid-like nuclear bodies around the respective binding sites on chromatin. Both phase separation mechanisms can explain that chromatin bodies are dynamic spherical structures, which can coalesce and are in constant and rapid exchange with the surrounding nucleoplasm. However, they make distinct predictions about how the size, density, and stability of chromatin bodies depends on the concentration and interaction behavior of the molecules involved. Here, we compare the different biophysical mechanisms for the assembly of chromatin bodies and discuss experimental strategies to distinguish them from each other. Furthermore, we outline the implications for the establishment and memory of functional chromatin state patterns.
Collapse
Affiliation(s)
- Fabian Erdel
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| |
Collapse
|
23
|
Entropic effect of macromolecular crowding enhances binding between nucleosome clutches in heterochromatin, but not in euchromatin. Sci Rep 2018; 8:5469. [PMID: 29615710 PMCID: PMC5882907 DOI: 10.1038/s41598-018-23753-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/16/2018] [Indexed: 11/08/2022] Open
Abstract
Sharp increase in macromolecular crowding induces abnormal chromatin compaction in the cell nucleus, suggesting its non-negligible impact on chromatin structure and function. However, the details of the crowding-induced chromatin compaction remain poorly understood. In this work, we present a computer simulation study on the entropic effect of macromolecular crowding on the interaction between chromatin structural units called nucleosome clutches. Nucleosome clutches were modeled by a chain of nucleosomes collapsed by harmonic restraints implicitly mimicking the nucleosome association mediated by histone tails and linker histones. The nucleosome density of the clutches was set close to either that of high-density heterochromatin or that of low-density euchromatin. The effective interactions between these nucleosome clutches were calculated in various crowding conditions, and it was found that the increase in the degree of macromolecular crowding induced attractive interaction between two clutches with high nucleosome density. Interestingly, the increased degree of macromolecular crowding did not induce any attraction between two clutches with low nucleosome density. Our results suggest that the entropic effect of macromolecular crowding can enhance binding between nucleosome clutches in heterochromatin, but not in euchromatin, as a result of the difference in nucleosome packing degrees.
Collapse
|
24
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
25
|
A ring-polymer model shows how macromolecular crowding controls chromosome-arm organization in Escherichia coli. Sci Rep 2017; 7:11896. [PMID: 28928399 PMCID: PMC5605704 DOI: 10.1038/s41598-017-10421-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Macromolecular crowding influences various cellular processes such as macromolecular association and transcription, and is a key determinant of chromosome organization in bacteria. The entropy of crowders favors compaction of long chain molecules such as chromosomes. To what extent is the circular bacterial chromosome, often viewed as consisting of “two arms”, organized entropically by crowding? Using computer simulations, we examine how a ring polymer is organized in a crowded and cylindrically-confined space, as a coarse-grained bacterial chromosome. Our results suggest that in a wide parameter range of biological relevance crowding is essential for separating the two arms in the way observed with Escherichia coli chromosomes at fast-growth rates, in addition to maintaining the chromosome in an organized collapsed state. Under different conditions, however, the ring polymer is centrally condensed or adsorbed onto the cylindrical wall with the two arms laterally collapsed onto each other. We discuss the relevance of our results to chromosome-membrane interactions.
Collapse
|
26
|
Jeon C, Hyeon C, Jung Y, Ha BY. How are molecular crowding and the spatial organization of a biopolymer interrelated. SOFT MATTER 2016; 12:9786-9796. [PMID: 27858047 DOI: 10.1039/c6sm01924b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In a crowded cellular interior, dissolved biomolecules or crowders exert excluded volume effects on other biomolecules, which in turn control various processes including protein aggregation and chromosome organization. As a result of these effects, a long chain molecule can be phase-separated into a condensed state, redistributing the surrounding crowders. Using computer simulations and a theoretical approach, we study the interrelationship between molecular crowding and chain organization. In a parameter space of biological relevance, the distributions of monomers and crowders follow a simple relationship: the sum of their volume fractions rescaled by their size remains constant. Beyond a physical picture of molecular crowding it offers, this finding explains a few key features of what has been known about chromosome organization in an E. coli cell.
Collapse
Affiliation(s)
- Chanil Jeon
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea.
| | - Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea.
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. and School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea.
| |
Collapse
|
27
|
Jorge AF, Nunes SC, Cova TF, Pais AA. Cooperative action in DNA condensation. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Jeon C, Jung Y, Ha BY. Effects of molecular crowding and confinement on the spatial organization of a biopolymer. SOFT MATTER 2016; 12:9436-9450. [PMID: 27834427 DOI: 10.1039/c6sm01184e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A chain molecule can be entropically collapsed in a crowded medium in a free or confined space. Here, we present a unified view of how molecular crowding collapses a flexible polymer in three distinct spaces: free, cylindrical, and (two-dimensional) slit-like. Despite their seeming disparities, a few general features characterize all these cases, even though the ϕc-dependence of chain compaction differs between the two cases: a > ac and a < ac, where ϕc is the volume fraction of crowders, a is the monomer size, and ac is the crowder size. For a > ac (applicable to a coarse-grained model of bacterial chromosomes), chain size depends on the ratio aϕc/ac, and "full" compaction occurs universally at aϕc/ac ≈ 1; for ac > a (relevant for protein folding), it is controlled by ϕc alone and crowding has a modest effect on chain size in a cellular environment (ϕc ≈ 0.3). Also for a typical parameter range of biological relevance, molecular crowding can be viewed as effectively reducing the solvent quality, independent of confinement.
Collapse
Affiliation(s)
- Chanil Jeon
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon 34141, Korea.
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. and School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
29
|
D'Adamo G, Dietler G, Micheletti C. Tuning knot abundance in semiflexible chains with crowders of different sizes: a Monte Carlo study of DNA chains. SOFT MATTER 2016; 12:6708-6715. [PMID: 27443238 DOI: 10.1039/c6sm01327a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use stochastic simulation techniques to sample the conformational space of linear semiflexible polymers in a crowded medium and study how the knotting properties depend on the crowder size and concentration. The abundance of physical knots in the chains, which for definiteness we model on 10 kb long DNA filaments, is shown to have a non-monotonic, unimodal dependence on the colloid diameter, dc. The maximum incidence of knots occurs when dc is about equal to half of the gyration radius of the isolated chain. The degree of enhancement of knots grows rapidly with the solution density and can be very conspicuous relative to the case of isolated chains with no crowders. For instance, at 30% volume fraction the relative increase is more than fourfold. This dramatic enhancement is shown to originate from the depletion-induced chain compaction over multiple and concurring length scales. The same effect accounts for the variations of the knot length that accompany the changes in knotting probability. The findings suggest that crowded media could be viably used as a passive physical means for controlling and modulating the incidence and length of knots in DNA and other types of semiflexible polymers.
Collapse
Affiliation(s)
- Giuseppe D'Adamo
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy.
| | - Giovanni Dietler
- Institut de Physique des Systèmes Biologiques, Ecole Polytechnique Fédérale de Lausanne, BSP, CH-1015 Lausanne, Switzerland
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy.
| |
Collapse
|
30
|
D’Adamo G, Pelissetto A, Pierleoni C. Phase Diagram and Structure of Mixtures of Large Colloids and Linear Polymers under Good-Solvent Conditions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Andrea Pelissetto
- Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sezione di Roma I, P.le Aldo Moro
2, I-00185 Rome, Italy
| | - Carlo Pierleoni
- Dipartimento di Scienze Fisiche
e Chimiche, Università dell’Aquila, V. Vetoio 10, Loc. Coppito, I-67100 L’Aquila, Italy
| |
Collapse
|
31
|
Wegner AS, Wintraecken K, Spurio R, Woldringh CL, de Vries R, Odijk T. Compaction of isolated Escherichia coli nucleoids: Polymer and H-NS protein synergetics. J Struct Biol 2016; 194:129-37. [PMID: 26868106 DOI: 10.1016/j.jsb.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022]
Abstract
Escherichia coli nucleoids were compacted by the inert polymer polyethylene glycol (PEG) in the presence of the H-NS protein. The protein by itself appears to have little impact on the size of the nucleoids as determined by fluorescent microscopy. However, it has a significant impact on the nucleoidal collapse by PEG. This is quantitatively explained by assuming the H-NS protein enhances the effective diameter of the DNA helix leading to an increase in the depletion forces induced by the PEG. Ultimately, however, the free energy of the nucleoid itself turns out to be independent of the H-NS concentration. This is because the enhancement of the supercoil excluded volume is negligible. The experiments on the nucleoids are corroborated by dynamic light scattering and EMSA analyses performed on DNA plasmids in the presence of PEG and H-NS.
Collapse
Affiliation(s)
- Anna S Wegner
- Complex Fluids Theory, Kluyver Institute for Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | - Kathelijne Wintraecken
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703HB Wageningen, The Netherlands
| | - Roberto Spurio
- University of Camerino, School of Biosciences and Veterinary Medicine, 62032 Camerino, MC, Italy
| | - Conrad L Woldringh
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703HB Wageningen, The Netherlands
| | - Theo Odijk
- Complex Fluids Theory, Kluyver Institute for Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Lorentz Institute for Theoretical Physics, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
| |
Collapse
|
32
|
Kang H, Toan NM, Hyeon C, Thirumalai D. Unexpected Swelling of Stiff DNA in a Polydisperse Crowded Environment. J Am Chem Soc 2015; 137:10970-8. [PMID: 26267166 DOI: 10.1021/jacs.5b04531] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigate the conformations of DNA-like stiff chains, characterized by contour length (L) and persistence length (lp), in a variety of crowded environments containing monodisperse soft spherical (SS) and spherocylindrical (SC) particles, a mixture of SS and SC, and a milieu mimicking the composition of proteins in the Escherichia coli cytoplasm. The stiff chain, whose size modestly increases in SS crowders up to ϕ ≈ 0.1, is considerably more compact at low volume fractions (ϕ ≤ 0.2) in monodisperse SC particles than in a medium containing SS particles. A 1:1 mixture of SS and SC crowders induces greater chain compaction than the pure SS or SC crowders at the same ϕ, with the effect being highly nonadditive. We also discover a counterintuitive result that the polydisperse crowding environment, mimicking the composition of a cell lysate, swells the DNA-like polymer, which is in stark contrast to the size reduction of flexible polymers in the same milieu. Trapping of the stiff chain in a fluctuating tube-like environment created by large-sized crowders explains the dramatic increase in size and persistence length of the stiff chain. In the polydisperse medium, mimicking the cellular environment, the size of the DNA (or related RNA) is determined by L/lp. At low L/lp, the size of the polymer is unaffected, whereas there is a dramatic swelling at an intermediate value of L/lp. We use these results to provide insights into recent experiments on crowding effects on RNA and also make testable predictions.
Collapse
Affiliation(s)
| | | | | | - D Thirumalai
- Korea Institute for Advanced Study , Seoul 130-722, Korea
| |
Collapse
|
33
|
Bakshi S, Choi H, Weisshaar JC. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front Microbiol 2015; 6:636. [PMID: 26191045 PMCID: PMC4488752 DOI: 10.3389/fmicb.2015.00636] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022] Open
Abstract
Single-molecule fluorescence provides high resolution spatial distributions of ribosomes and RNA polymerase (RNAP) in live, rapidly growing Escherichia coli. Ribosomes are more strongly segregated from the nucleoids (chromosomal DNA) than previous widefield fluorescence studies suggested. While most transcription may be co-translational, the evidence indicates that most translation occurs on free mRNA copies that have diffused from the nucleoids to a ribosome-rich region. Analysis of time-resolved images of the nucleoid spatial distribution after treatment with the transcription-halting drug rifampicin and the translation-halting drug chloramphenicol shows that both drugs cause nucleoid contraction on the 0–3 min timescale. This is consistent with the transertion hypothesis. We suggest that the longer-term (20–30 min) nucleoid expansion after Rif treatment arises from conversion of 70S-polysomes to 30S and 50S subunits, which readily penetrate the nucleoids. Monte Carlo simulations of a polymer bead model built to mimic the chromosomal DNA and ribosomes (either 70S-polysomes or 30S and 50S subunits) explain spatial segregation or mixing of ribosomes and nucleoids in terms of excluded volume and entropic effects alone. A comprehensive model of the transcription-translation-transertion system incorporates this new information about the spatial organization of the E. coli cytoplasm. We propose that transertion, which radially expands the nucleoids, is essential for recycling of 30S and 50S subunits from ribosome-rich regions back into the nucleoids. There they initiate co-transcriptional translation, which is an important mechanism for maintaining RNAP forward progress and protecting the nascent mRNA chain. Segregation of 70S-polysomes from the nucleoid may facilitate rapid growth by shortening the search time for ribosomes to find free mRNA concentrated outside the nucleoid and the search time for RNAP concentrated within the nucleoid to find transcription initiation sites.
Collapse
Affiliation(s)
- Somenath Bakshi
- Department of Chemistry and Molecular Biophysics Program, University of Wisconsin-Madison, Madison WI, USA
| | - Heejun Choi
- Department of Chemistry and Molecular Biophysics Program, University of Wisconsin-Madison, Madison WI, USA
| | - James C Weisshaar
- Department of Chemistry and Molecular Biophysics Program, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
34
|
de Haan HW, Shendruk TN. Force-Extension for DNA in a Nanoslit: Mapping between the 3D and 2D Limits. ACS Macro Lett 2015; 4:632-635. [PMID: 35596406 DOI: 10.1021/acsmacrolett.5b00138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The force-extension relation for a semiflexible polymer confined in a nanoslit is investigated. Both the effective correlation length and force-extension relation change as the chain goes from 3D (large slit heights) to 2D (tight confinement). At low forces, correlations along the polymer give an effective dimensionality. The strong force limit can be interpolated with the weak force limit for two regimes: when confinement dominates over extensile force and vice versa. These interpolations give good agreement with simulations for all slit heights and forces. We thus generalize the Marko-Siggia force-extension relation for DNA and other semiflexible biopolymers in nanoconfinement.
Collapse
Affiliation(s)
- Hendrick W. de Haan
- University of Ontario Institute of Technology, Faculty
of Science, 2000 Simcoe
Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Tyler N. Shendruk
- The
Rudolf Peierls Centre for Theoretical Physics, Department of Physics,
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
| |
Collapse
|
35
|
Jun S. Chromosome, cell cycle, and entropy. Biophys J 2015; 108:785-786. [PMID: 25692581 DOI: 10.1016/j.bpj.2014.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Suckjoon Jun
- Department of Physics, Division of Biology, University of California San Diego, La Jolla, California; Section of Molecular Biology, Division of Biology, University of California San Diego, La Jolla, California.
| |
Collapse
|
36
|
Liao GJ, Chien FT, Luzhbin D, Chen YL. Entropic attraction: Polymer compaction and expansion induced by nano-particles in confinement. J Chem Phys 2015; 142:174904. [DOI: 10.1063/1.4919650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Guo-Jun Liao
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - Fan-Tso Chien
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Dmytro Luzhbin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Yeng-Long Chen
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|