1
|
Spoelstra WK, Jacques JM, Gonzalez-Linares R, Nobrega FL, Haagsma AC, Dogterom M, Meijer DH, Idema T, Brouns SJJ, Reese L. CRISPR-based DNA and RNA detection with liquid-liquid phase separation. Biophys J 2021; 120:1198-1209. [PMID: 33617832 PMCID: PMC8059199 DOI: 10.1016/j.bpj.2021.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.
Collapse
Affiliation(s)
- Willem Kasper Spoelstra
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Jeroen M Jacques
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Rodrigo Gonzalez-Linares
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Franklin L Nobrega
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Anna C Haagsma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Timon Idema
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Louis Reese
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
2
|
Chudinova EM, Brodsky IB, Nadezhdina ES. On the interaction of ribosomal protein RPL22e with microtubules. Cell Biol Int 2019; 43:749-759. [PMID: 30958636 DOI: 10.1002/cbin.11141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/23/2019] [Indexed: 11/10/2022]
Abstract
Microtubule (MT) protein preparations often contain components of the translation machinery, including ribosome proteins. To understand the biological meaning of it we studied the interaction of ribosomal protein RPL22e with the MT. We found that bacteria expressed purified RPL22e-GFP-6His did co-sediment with brain tubulin MTs with 1.3 µM dissociation coefficient. Such a KD is comparable to some specific MT-associated proteins. Distinct in vitro interaction of RPL22e-GFP with MTs was also observed by TIRF microscopy. In real-time assay, RPL22e-GFP molecules stayed bound to MTs for several seconds, and 15% of them demonstrated random-walk along MTs with diffusion coefficient 0.03 µ2 /s. Deletion of basic areas of RPL22e did not have an impact on KD , and deletion of acidic tail slightly increased association with MTs. Interestingly, the deletion of acidic tail increased diffusion coefficient as well. The interaction of RPL22e with MTs is hardly noticeable in vivo in cultured cells, probably since a significant part of the protein is incorporated into the ribosomes. The mobility of ribosomal protein on the MTs probably prevents its interfering with MT-dependent transport and could ameliorate its transport to the nucleus.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str., 6, 117198 Moscow, Russia
| | - Ilya B Brodsky
- M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| |
Collapse
|
3
|
Grishchuk EL. Biophysics of Microtubule End Coupling at the Kinetochore. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:397-428. [PMID: 28840247 DOI: 10.1007/978-3-319-58592-5_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Reithmann E, Reese L, Frey E. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments. PHYSICAL REVIEW LETTERS 2016; 117:078102. [PMID: 27564001 DOI: 10.1103/physrevlett.117.078102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 06/06/2023]
Abstract
Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.
Collapse
Affiliation(s)
- Emanuel Reithmann
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Louis Reese
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| |
Collapse
|