Marziano C, Hong K, Cope EL, Kotlikoff MI, Isakson BE, Sonkusare SK. Nitric Oxide-Dependent Feedback Loop Regulates Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Cooperativity and Endothelial Function in Small Pulmonary Arteries.
J Am Heart Assoc 2017;
6:JAHA.117.007157. [PMID:
29275372 PMCID:
PMC5779028 DOI:
10.1161/jaha.117.007157]
[Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND
Recent studies demonstrate that spatially restricted, local Ca2+ signals are key regulators of endothelium-dependent vasodilation in systemic circulation. There are drastic functional differences between pulmonary arteries (PAs) and systemic arteries, but the local Ca2+ signals that control endothelium-dependent vasodilation of PAs are not known. Localized, unitary Ca2+ influx events through transient receptor potential vanilloid 4 (TRPV4) channels, termed TRPV4 sparklets, regulate endothelium-dependent vasodilation in resistance-sized mesenteric arteries via activation of Ca2+-dependent K+ channels. The objective of this study was to determine the unique functional roles, signaling targets, and endogenous regulators of TRPV4 sparklets in resistance-sized PAs.
METHODS AND RESULTS
Using confocal imaging, custom image analysis, and pressure myography in fourth-order PAs in conjunction with knockout mouse models, we report a novel Ca2+ signaling mechanism that regulates endothelium-dependent vasodilation in resistance-sized PAs. TRPV4 sparklets exhibit distinct spatial localization in PAs when compared with mesenteric arteries, and preferentially activate endothelial nitric oxide synthase (eNOS). Nitric oxide released by TRPV4-endothelial nitric oxide synthase signaling not only promotes vasodilation, but also initiates a guanylyl cyclase-protein kinase G-dependent negative feedback loop that inhibits cooperative openings of TRPV4 channels, thus limiting sparklet activity. Moreover, we discovered that adenosine triphosphate dilates PAs through a P2 purinergic receptor-dependent activation of TRPV4 sparklets.
CONCLUSIONS
Our results reveal a spatially distinct TRPV4-endothelial nitric oxide synthase signaling mechanism and its novel endogenous regulators in resistance-sized PAs.
Collapse