1
|
Okechukwu NG, Klein C, Jamann H, Maitre M, Patte-Mensah C, Mensah-Nyagan AG. Monomeric Amyloid Peptide-induced Toxicity in Human Oligodendrocyte Cell Line and Mouse Brain Primary Mixed-glial Cell Cultures: Evidence for a Neuroprotective Effect of Neurosteroid 3α-O-allyl-allopregnanolone. Neurotox Res 2024; 42:37. [PMID: 39102123 DOI: 10.1007/s12640-024-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3 µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600 nM-1 µM), extremely lower than 3 µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500 nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100 nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.
Collapse
Affiliation(s)
- Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000, Strasbourg, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000, Strasbourg, France
- Centre d'Investigation Clinique de Strasbourg (CIC), Equipe CIC-Recherche Translationnelle Neuro, INSERM 1434, Université de Strasbourg, Bâtiment CRBS, 1 rue Eugène Boeckel, 67000, Strasbourg, France
| | - Hélène Jamann
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000, Strasbourg, France
- Centre d'Investigation Clinique de Strasbourg (CIC), Equipe CIC-Recherche Translationnelle Neuro, INSERM 1434, Université de Strasbourg, Bâtiment CRBS, 1 rue Eugène Boeckel, 67000, Strasbourg, France
| | - Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000, Strasbourg, France
- Centre d'Investigation Clinique de Strasbourg (CIC), Equipe CIC-Recherche Translationnelle Neuro, INSERM 1434, Université de Strasbourg, Bâtiment CRBS, 1 rue Eugène Boeckel, 67000, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000, Strasbourg, France
- Centre d'Investigation Clinique de Strasbourg (CIC), Equipe CIC-Recherche Translationnelle Neuro, INSERM 1434, Université de Strasbourg, Bâtiment CRBS, 1 rue Eugène Boeckel, 67000, Strasbourg, France
| | - Ayikoé-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000, Strasbourg, France.
- Centre d'Investigation Clinique de Strasbourg (CIC), Equipe CIC-Recherche Translationnelle Neuro, INSERM 1434, Université de Strasbourg, Bâtiment CRBS, 1 rue Eugène Boeckel, 67000, Strasbourg, France.
| |
Collapse
|
2
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
3
|
Adélaïde M, Salnikov E, Ramos-Martín F, Aisenbrey C, Sarazin C, Bechinger B, D’Amelio N. The Mechanism of Action of SAAP-148 Antimicrobial Peptide as Studied with NMR and Molecular Dynamics Simulations. Pharmaceutics 2023; 15:pharmaceutics15030761. [PMID: 36986623 PMCID: PMC10051583 DOI: 10.3390/pharmaceutics15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: SAAP-148 is an antimicrobial peptide derived from LL-37. It exhibits excellent activity against drug-resistant bacteria and biofilms while resisting degradation in physiological conditions. Despite its optimal pharmacological properties, its mechanism of action at the molecular level has not been explored. Methods: The structural properties of SAAP-148 and its interaction with phospholipid membranes mimicking mammalian and bacterial cells were studied using liquid and solid-state NMR spectroscopy as well as molecular dynamics simulations. Results: SAAP-148 is partially structured in solution and stabilizes its helical conformation when interacting with DPC micelles. The orientation of the helix within the micelles was defined by paramagnetic relaxation enhancements and found similar to that obtained using solid-state NMR, where the tilt and pitch angles were determined based on 15N chemical shift in oriented models of bacterial membranes (POPE/POPG). Molecular dynamic simulations revealed that SAAP-148 approaches the bacterial membrane by forming salt bridges between lysine and arginine residues and lipid phosphate groups while interacting minimally with mammalian models containing POPC and cholesterol. Conclusions: SAAP-148 stabilizes its helical fold onto bacterial-like membranes, placing its helix axis almost perpendicular to the surface normal, thus probably acting by a carpet-like mechanism on the bacterial membrane rather than forming well-defined pores.
Collapse
Affiliation(s)
- Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Evgeniy Salnikov
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| | - Christopher Aisenbrey
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| |
Collapse
|
4
|
Abstract
An understanding of how the amino acid sequence affects the interaction of peptides with lipid membranes remains mostly unknown. This type of knowledge is required to rationalize membrane-induced toxicity of amyloid peptides and to design peptides that can interact with lipid bilayers. Here, we perform a systematic study of how variations in the sequence of the amphipathic Ac-(FKFE)2-NH2 peptide affect its interaction with zwitterionic lipid bilayers using extensive all-atom molecular dynamics simulations in explicit solvent. Our results show that peptides with a net positive charge bind more frequently to the lipid bilayer than neutral or negatively charged sequences. Moreover, neutral amphipathic peptides made with the same numbers of phenylalanine (F), lysine (K), and glutamic (E) amino acids at different positions in the sequence differ significantly in their frequency of binding to the membrane. We find that peptides bind with a higher frequency to the membrane if their positive lysine side chains are more exposed to the solvent, which occurs if they are located at the extremity (as opposed to the middle) of the sequence. Non-polar residues play an important role in accounting for the adsorption of peptides onto the membrane. In particular, peptides made with less hydrophobic non-polar residues (e.g., valine and alanine) are significantly less adsorbed to the membrane compared to peptides made with phenylalanine. We also find that sequences where phenylalanine residues are located at the extremities of the peptide have a higher tendency to be adsorbed.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
5
|
Wang K, Shao X, Cai W. Binding Models of Aβ42 Peptide with Membranes Explored by Molecular Simulations. J Chem Inf Model 2022; 62:6482-6493. [PMID: 35984710 DOI: 10.1021/acs.jcim.2c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the factors contributing to the toxicity of amyloid-β (Aβ) peptides is the destruction of membrane integrity through Aβ peptide-membrane interactions. The binding of Aβ peptides to membranes has been studied by experiments and theoretical simulations extensively. The exact binding mechanism, however, still remains elusive. In the present study, the molecular basis of the peptide-bilayer binding mechanism of the full-length Aβ42 monomer with POPC/POPS/CHOL bilayers is investigated by all-atom (AA) simulations. Three main binding models in coil, bend, and turn structures are obtained. Model 1 of the three models with the central hydrophobic core (CHC) buried inside the membrane is the dominant binding model. The structural features of the peptide, the peptide-bilayer interacting regions, the intrapeptide interactions, and peptide-water interactions are studied. The binding of the Aβ42 monomer to the POPC/POPS/CHOL bilayer is also explored by coarse-grained (CG) simulations as a complement. Both the AA and CG simulations show that residues in CHC prefer forming interactions with the bilayer, indicating the crucial role of CHC in peptide-bilayer binding. Our results can provide new insights for the investigation of the peptide-bilayer binding mechanism of the Aβ peptide.
Collapse
Affiliation(s)
- Ke Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Boopathi S, Garduño‐Juárez R. Calcium inhibits penetration of Alzheimer's Aβ 1 - 42 monomers into the membrane. Proteins 2022; 90:2124-2143. [PMID: 36321654 PMCID: PMC9804374 DOI: 10.1002/prot.26403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Calcium ion regulation plays a crucial role in maintaining neuronal functions such as neurotransmitter release and synaptic plasticity. Copper (Cu2+ ) coordination to amyloid-β (Aβ) has accelerated Aβ1-42 aggregation that can trigger calcium dysregulation by enhancing the influx of calcium ions by extensive perturbing integrity of the membranes. Aβ1-42 aggregation, calcium dysregulation, and membrane damage are Alzheimer disease (AD) implications. To gain a detail of calcium ions' role in the full-length Aβ1-42 and Aβ1-42 -Cu2+ monomers contact, the cellular membrane before their aggregation to elucidate the neurotoxicity mechanism, we carried out 2.5 μs extensive molecular dynamics simulation (MD) to rigorous explorations of the intriguing feature of the Aβ1-42 and Aβ1-42 -Cu2+ interaction with the dimyristoylphosphatidylcholine (DMPC) bilayer in the presence of calcium ions. The outcome of the results compared to the same simulations without calcium ions. We surprisingly noted robust binding energies between the Aβ1-42 and membrane observed in simulations containing without calcium ions and is two and a half fold lesser in the simulation with calcium ions. Therefore, in the case of the absence of calcium ions, N-terminal residues of Aβ1-42 deeply penetrate from the surface to the center of the bilayer; in contrast to calcium ions presence, the N- and C-terminal residues are involved only in surface contacts through binding phosphate moieties. On the other hand, Aβ1-42 -Cu2+ actively participated in surface bilayer contacts in the absence of calcium ions. These contacts are prevented by forming a calcium bridge between Aβ1-42 -Cu2+ and the DMPC bilayer in the case of calcium ions presence. In a nutshell, Calcium ions do not allow Aβ1-42 penetration into the membranes nor contact of Aβ1-42 -Cu2+ with the membranes. These pieces of information imply that the calcium ions mediate the membrane perturbation via the monomer interactions but do not damage the membrane; they agree with the western blot experimental results of a higher concentration of calcium ions inhibit the membrane pore formation by Aβ peptides.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Ramón Garduño‐Juárez
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
7
|
Boopathi S, Poma AB, Garduño-Juárez R. An Overview of Several Inhibitors for Alzheimer's Disease: Characterization and Failure. Int J Mol Sci 2021; 22:10798. [PMID: 34639140 PMCID: PMC8509255 DOI: 10.3390/ijms221910798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/04/2023] Open
Abstract
Amyloid beta (Aβ) oligomers are the most neurotoxic aggregates causing neuronal death and cognitive damage. A detailed elucidation of the aggregation pathways from oligomers to fibril formation is crucial to develop therapeutic strategies for Alzheimer's disease (AD). Although experimental techniques rely on the measure of time- and space-average properties, they face severe difficulties in the investigation of Aβ peptide aggregation due to their intrinsically disorder character. Computer simulation is a tool that allows tracing the molecular motion of molecules; hence it complements Aβ experiments, as it allows to explore the binding mechanism between metal ions and Aβ oligomers close to the cellular membrane at the atomic resolution. In this context, integrated studies of experiments and computer simulations can assist in mapping the complete pathways of aggregation and toxicity of Aβ peptides. Aβ oligomers are disordered proteins, and due to a rapid exploration of their intrinsic conformational space in real-time, they are challenging therapeutic targets. Therefore, no good drug candidate could have been identified for clinical use. Our previous investigations identified two small molecules, M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine) and Gabapentin, capable of Aβ binding and inhibiting molecular aggregation, synaptotoxicity, intracellular calcium signaling, cellular toxicity and memory losses induced by Aβ. Thus, we recommend these molecules as novel candidates to assist anti-AD drug discovery in the near future. This review discusses the most recent research investigations about the Aβ dynamics in water, close contact with cell membranes, and several therapeutic strategies to remove plaque formation.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Adolfo B. Poma
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research Polish Academy of Science, Pawińskiego 5B, 02-106 Warsaw, Poland
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| |
Collapse
|
8
|
Yang Y, Jalali S, Nilsson BL, Dias CL. Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations. ACS Chem Neurosci 2021; 12:2027-2035. [PMID: 33973758 DOI: 10.1021/acschemneuro.1c00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In several neurodegenerative diseases, cell toxicity can emerge from damage produced by amyloid aggregates to lipid membranes. The details accounting for this damage are poorly understood including how individual amyloid peptides interact with phospholipid membranes before aggregation. Here, we use all-atom molecular dynamics simulations to investigate the molecular mechanisms accounting for amyloid-membrane interactions and the role played by calcium ions in this interaction. Model peptides known to self-assemble into amyloid fibrils and bilayer made from zwitterionic and anionic lipids are used in this study. We find that both electrostatic and hydrophobic interactions contribute to peptide-bilayer binding. In particular, the attraction of peptides to lipid bilayers is dominated by electrostatic interactions between positive residues and negative phosphate moieties of lipid head groups. This attraction is stronger for anionic bilayers than for zwitterionic ones. Hydrophobicity drives the burial of nonpolar residues into the interior of the bilayer producing strong binding in our simulations. Moreover, we observe that the attraction of peptides to the bilayer is significantly reduced in the presence of calcium ions. This is due to the binding of calcium ions to negative phosphate moieties of lipid head groups, which leaves phospholipid bilayers with a net positive charge. Strong binding of the peptide to the membrane occurs less frequently in the presence of calcium ions and involves the formation of a "Ca2+ bridge".
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L. Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L. Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
9
|
Zheng W, Wen H. Investigating dual Ca 2+ modulation of the ryanodine receptor 1 by molecular dynamics simulation. Proteins 2020; 88:1528-1539. [PMID: 32557910 DOI: 10.1002/prot.25971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/09/2022]
Abstract
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+ -activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+ -modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+ , Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+ .
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBK Ca channels by a membrane-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183337. [PMID: 32380169 DOI: 10.1016/j.bbamem.2020.183337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BKCa) channel, including the mitochondrial BKCa (mitoBKCa) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ1-42) and its fragment, Aβ25-35, on the activity of mitoBKCa channels. We found that all forms of Aβ inhibited the activity of the mitoBKCa channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBKCa channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ1-42, demonstrated similar inhibitory activity towards mitoBKCa channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Krzysztof Nieznanski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Elena Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| |
Collapse
|
11
|
Dubois V, Serrano D, Seeger S. Amyloid-β Peptide-Lipid Bilayer Interaction Investigated by Supercritical Angle Fluorescence. ACS Chem Neurosci 2019; 10:4776-4786. [PMID: 31125200 DOI: 10.1021/acschemneuro.9b00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The understanding of the interaction between the membrane of neurons and amyloid-β peptides is of crucial importance to shed light on the mechanism of toxicity in Alzheimer's disease. This paper describes how supercritical angle fluorescence spectroscopy was applied to monitor in real-time the interaction between a supported lipid bilayer (SLB) and the peptide. Different forms of amyloid-β (40 and 42 amino acids composition) were tested, and the interfacial fluorescence was measured to get information about the lipid integrity and mobility. The results show a concentration-dependent damaging process of the lipid bilayer. Prolonged interaction with the peptide up to 48 h lead to an extraction and clustering of lipid molecules from the surface and a potential disruption of the bilayer, correlated with the formation of peptide aggregates. The natural diffusion of the lipid was slightly hindered by the interaction with amyloid-β(1-42) and closely related to the oligomerization of the peptide. The adsorption and desorption of Amyloid-β was also characterized in terms of affinity. Amyloid-β(1-42) exhibited a slightly higher affinity than amyloid-β(1-40). The former was also more prone to aggregate and to adsorb on the bilayer as oligomer.
Collapse
Affiliation(s)
- Valentin Dubois
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Diana Serrano
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Stefan Seeger
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
12
|
Lockhart C, Klimov DK. Cholesterol Changes the Mechanisms of Aβ Peptide Binding to the DMPC Bilayer. J Chem Inf Model 2017; 57:2554-2565. [PMID: 28910085 DOI: 10.1021/acs.jcim.7b00431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using isobaric-isothermal all-atom replica-exchange molecular dynamics (REMD) simulations, we investigated the equilibrium binding of Aβ10-40 monomers to the zwitterionic dimyristoylphosphatidylcholine (DMPC) bilayer containing cholesterol. Our previous REMD simulations, which studied binding of the same peptide to the cholesterol-free DMPC bilayer, served as a control, against which we measured the impact of cholesterol. Our findings are as follows. First, addition of cholesterol to the DMPC bilayer partially expels the Aβ peptide from the hydrophobic core and promotes its binding to bilayer polar headgroups. Using thermodynamic and energetics analyses, we argued that Aβ partial expulsion is not related to cholesterol-induced changes in lateral pressure within the bilayer but is caused by binding energetics, which favors Aβ binding to the surface of the densely packed cholesterol-rich bilayer. Second, cholesterol has a protective effect on the DMPC bilayer structure against perturbations caused by Aβ binding. More specifically, cholesterol reduces bilayer thinning and overall depletion of bilayer density beneath the Aβ binding footprint. Third, we found that the Aβ peptide contains a single cholesterol binding site, which involves hydrophobic C-terminal amino acids (Ile31-Val36), Phe19, and Phe20 from the central hydrophobic cluster, and cationic Lys28 from the turn region. This binding site accounts for about 76% of all Aβ-cholesterol interactions. Because cholesterol binding site in the Aβ10-40 peptide does not contain the GXXXG motif featured in cholesterol interactions with the transmembrane domain C99 of the β-amyloid precursor protein, we argued that the binding mechanisms for Aβ and C99 are distinct reflecting their different conformations and positions in the lipid bilayer. Fourth, cholesterol sharply reduces the helical propensity in the bound Aβ peptide. As a result, cholesterol largely eliminates the emergence of helical structure observed upon Aβ transition from a water environment to the cholesterol-free DMPC bilayer. We explain this effect by the formation of hydrogen bonds between cholesterol and the Aβ backbone, which prevent helix formation. Taken together, we expect that our simulations will advance understanding of a molecular-level mechanism behind the role of cholesterol in Alzheimer's disease.
Collapse
Affiliation(s)
- Christopher Lockhart
- School of Systems Biology, George Mason University , Manassas, Virginia 20110, United States
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University , Manassas, Virginia 20110, United States
| |
Collapse
|
13
|
Zhang M, Hu R, Ren B, Chen H, Jiang B, Ma J, Zheng J. Molecular Understanding of Aβ-hIAPP Cross-Seeding Assemblies on Lipid Membranes. ACS Chem Neurosci 2017; 8:524-537. [PMID: 27936589 DOI: 10.1021/acschemneuro.6b00247] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Amyloid-β (Aβ) and human islet polypeptide (hIAPP) are the causative agents responsible for Alzheimer's disease (AD) and type II diabetes (T2D), respectively. While numerous studies have reported the cross-seeding behavior of Aβ and hIAPP in solution, little effort has been made to examine the cross-seeding of Aβ and hIAPP in the presence of cell membranes, which is more biologically relevant to the pathological link between AD and T2D. In this work, we computationally study the cross-seeding and adsorption behaviors of Aβ and hIAPP on zwitterionic POPC and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) mixed bilayers using all-atom molecular dynamics (MD) simulations, particularly aiming to the effects of the initial orientation of the Aβ-hIAPP assembly and the lipid composition of cell membranes on mutual structural and interaction changes in both Aβ-hIAPP assembly and lipid bilayers at the atomic level. Aβ-hIAPP cross-seeding assembly always preferred to adopt a specific orientation and interface to associate with both lipid bilayers strongly via the N-terminal strands of Aβ. Such membrane-bound orientation explains experimental observation that hybrid Aβ-hIAPP fibrils on cell membranes showed similar morphologies to pure hIAPP fibrils. Moreover, Aβ-hIAPP assembly, regardless of its initial orientations, interacted more strongly with POPC/POPG bilayer than POPC bilayer, indicating that electrostatic interactions are the major forces governing peptide-lipid interactions. Strong electrostatic interactions were also attributed to the formation of Ca2+ bridges connecting both negatively charged Glu of Aβ and PO4 head groups of lipids, which facilitate the association of Aβ-hIAPP with the POPC/POPG bilayer. It was also found that the strong peptide-lipid binding reduced lipid fluidity. Both facts imply that Aβ-hIAPP assembly may induce cell damage by altering calcium homeostasis and cell membrane phase. This work provides a better fundamental understanding of cross-seeding of Aβ and hIAPP on cell membranes and a potential pathological link between AD and T2D.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hong Chen
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Binbo Jiang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- College
of Chemical and Biological Engineering Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jie Ma
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- State
Key Laboratory of Pollution Control and Resource Reuse School of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
14
|
Siwy CM, Lockhart C, Klimov DK. Is the Conformational Ensemble of Alzheimer's Aβ10-40 Peptide Force Field Dependent? PLoS Comput Biol 2017; 13:e1005314. [PMID: 28085875 PMCID: PMC5279813 DOI: 10.1371/journal.pcbi.1005314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/30/2017] [Accepted: 12/16/2016] [Indexed: 11/21/2022] Open
Abstract
By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble. Dependence of protein conformational ensembles on force field parameterizations limits the predictive power of molecular dynamics simulations. To address this problem, we evaluated five all-atom force fields for their consistency in reproducing the conformational ensemble of Alzheimer’s Aβ10-40 peptide. To generate conformational ensembles, we have used replica exchange molecular dynamics and computed Aβ10-40 secondary and tertiary structures. We found that, although all force fields predict Aβ10-40 unfolded structure, they strongly disagree on helix and β propensities and tertiary structure distributions. We have also calculated Aβ10-40 J-coupling and residual dipolar coupling constants and compared them with the experimental data for the full-length Aβ1-40 peptide. Unexpectedly, we determined that in silico Aβ10-40 and experimental Aβ1-40 constants are in better agreement than these quantities computed and measured previously for identical peptides, such as Aβ1-40 or Aβ1-42. We then concluded that the conformational ensembles of Aβ10-40 and Aβ1-40 are similar and on this basis argue that CHARMM36 force field with standard TIP3P water model provides the most accurate description of Aβ10-40. Although our objective was not to evaluate the biomolecular force fields in general, our study is expected to facilitate their proper selection for the simulations of Alzheimer’s peptides.
Collapse
Affiliation(s)
- Christopher M. Siwy
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Christopher Lockhart
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Dmitri K. Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Parikh N, Klimov DK. Inclusion of lipopeptides into the DMPC lipid bilayers prevents Aβ peptide insertion. Phys Chem Chem Phys 2017; 19:10087-10098. [DOI: 10.1039/c7cp01003f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipopeptides prevent penetration of Alzheimer's Aβ peptides into lipid bilayers.
Collapse
Affiliation(s)
- Niyati Parikh
- School of Systems Biology
- George Mason University
- Manassas
- USA
| | | |
Collapse
|
16
|
Lockhart C, Klimov DK. The Alzheimer's disease A β peptide binds to the anionic DMPS lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1118-28. [DOI: 10.1016/j.bbamem.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022]
|