1
|
Oldemeyer S, La Greca M, Langner P, Lê Công KL, Schlesinger R, Heberle J. Nanosecond Transient IR Spectroscopy of Halorhodopsin in Living Cells. J Am Chem Soc 2024; 146:19118-19127. [PMID: 38950551 PMCID: PMC11258790 DOI: 10.1021/jacs.4c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The ability to track minute changes of a single amino acid residue in a cellular environment is causing a paradigm shift in the attempt to fully understand the responses of biomolecules that are highly sensitive to their environment. Detecting early protein dynamics in living cells is crucial to understanding their mechanisms, such as those of photosynthetic proteins. Here, we elucidate the light response of the microbial chloride pump NmHR from the marine bacterium Nonlabens marinus, located in the membrane of living Escherichia coli cells, using nanosecond time-resolved UV/vis and IR absorption spectroscopy over the time range from nanoseconds to seconds. Transient structural changes of the retinal cofactor and the surrounding apoprotein are recorded using light-induced time-resolved UV/vis and IR difference spectroscopy. Of particular note, we have resolved the kinetics of the transient deprotonation of a single cysteine residue during the photocycle of NmHR out of the manifold of molecular vibrations of the cells. These findings are of high general relevance, given the successful development of optogenetic tools from photoreceptors to interfere with enzymatic and neuronal pathways in living organisms using light pulses as a noninvasive trigger.
Collapse
Affiliation(s)
- Sabine Oldemeyer
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mariafrancesca La Greca
- Genetic
Biophysics, Department of Physics, Freie
Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Karoline-Luisa Lê Công
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Genetic
Biophysics, Department of Physics, Freie
Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
2
|
Fischer P, Schiewer E, Broser M, Busse W, Spreen A, Grosse M, Hegemann P, Bartl F. The Functionality of the DC Pair in a Rhodopsin Guanylyl Cyclase from Catenaria anguillulae. J Mol Biol 2024; 436:168375. [PMID: 38092286 DOI: 10.1016/j.jmb.2023.168375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Rhodopsin guanylyl cyclases (RGCs) belong to the class of enzymerhodopsins catalyzing the transition from GTP into the second messenger cGMP, whereas light-regulation of enzyme activity is mediated by a membrane-bound microbial rhodopsin domain, that holds the catalytic center inactive in the dark. Structural determinants for activation of the rhodopsin moiety eventually leading to catalytic activity are largely unknown. Here, we investigate the mechanistic role of the D283-C259 (DC) pair that is hydrogen bonded via a water molecule as a crucial functional motif in the homodimeric C. anguillulae RGC. Based on a structural model of the DC pair in the retinal binding pocket obtained by MD simulation, we analyzed formation and kinetics of early and late photocycle intermediates of the rhodopsin domain wild type and specific DC pair mutants by combined UV-Vis and FTIR spectroscopy at ambient and cryo-temperatures. By assigning specific infrared bands to S-H vibrations of C259 we are able to show that the DC pair residues are tightly coupled. We show that deprotonation of D283 occurs already in the inactive L state as a prerequisite for M state formation, whereas structural changes of C259 occur in the active M state and early cryo-trapped intermediates. We propose a comprehensive molecular model for formation of the M state that activates the catalytic moiety. It involves light induced changes in bond strength and hydrogen bonding of the DC pair residues from the early J state to the active M state and explains the retarding effect of C259 mutants.
Collapse
Affiliation(s)
- Paul Fischer
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Enrico Schiewer
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Matthias Broser
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Wayne Busse
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Anika Spreen
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Max Grosse
- Institut für Biologie, Biophysikalische Chemie, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Franz Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| |
Collapse
|
3
|
Bühl E, Resler T, Lam R, Asido M, Bamberg E, Schlesinger R, Bamann C, Heberle J, Wachtveitl J. Assessing the Role of R120 in the Gating of CrChR2 by Time-Resolved Spectroscopy from Femtoseconds to Seconds. J Am Chem Soc 2023; 145:21832-21840. [PMID: 37773976 DOI: 10.1021/jacs.3c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Tom Resler
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebecca Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Schubert L, Chen JL, Fritz T, Marxer F, Langner P, Hoffmann K, Gamiz-Hernandez AP, Kaila VRI, Schlesinger R, Heberle J. Proton Release Reactions in the Inward H + Pump NsXeR. J Phys Chem B 2023; 127:8358-8369. [PMID: 37729557 DOI: 10.1021/acs.jpcb.3c04100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Directional ion transport across biological membranes plays a central role in many cellular processes. Elucidating the molecular determinants for vectorial ion transport is key to understanding the functional mechanism of membrane-bound ion pumps. The extensive investigation of the light-driven proton pump bacteriorhodopsin from Halobacterium salinarum(HsBR) enabled a detailed description of outward proton transport. Although the structure of inward-directed proton pumping rhodopsins is very similar to HsBR, little is known about their protonation pathway, and hence, the molecular reasons for the vectoriality of proton translocation remain unclear. Here, we employ a combined experimental and theoretical approach to tracking protonation steps in the light-driven inward proton pump xenorhodopsin from Nanosalina sp. (NsXeR). Time-resolved infrared spectroscopy reveals the transient deprotonation of D220 concomitantly with deprotonation of the retinal Schiff base. Our molecular dynamics simulations support a proton release pathway from the retinal Schiff base via a hydrogen-bonded water wire leading to D220 that could provide a putative gating point for the proton release and with allosteric interactions to the retinal Schiff base. Our findings support the key role of D220 in mediating proton release to the cytoplasmic side and provide evidence that this residue is not the primary proton acceptor of the proton transiently released by the retinal Schiff base.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Jheng-Liang Chen
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Tobias Fritz
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Florina Marxer
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Kirsten Hoffmann
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| |
Collapse
|
5
|
Shibata K, Oda K, Nishizawa T, Hazama Y, Ono R, Takaramoto S, Bagherzadeh R, Yawo H, Nureki O, Inoue K, Akiyama H. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2. J Am Chem Soc 2023; 145:10779-10789. [PMID: 37129501 DOI: 10.1021/jacs.3c01879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels and central optogenetic tools that can control neuronal activity with high temporal resolution at the single-cell level. Although their application in optogenetics has rapidly progressed, it is unsolved how their channels open and close. ChRs transport ions through a series of interlocking elementary processes that occur over a broad time scale of subpicoseconds to seconds. During these processes, the retinal chromophore functions as a channel regulatory domain and transfers the optical input as local structural changes to the channel operating domain, the helices, leading to channel gating. Thus, the core question on channel gating dynamics is how the retinal chromophore structure changes throughout the photocycle and what rate-limits the kinetics. Here, we investigated the structural changes in the retinal chromophore of canonical ChR, C1C2, in all photointermediates using time-resolved resonance Raman spectroscopy. Moreover, to reveal the rate-limiting factors of the photocycle and channel gating, we measured the kinetic isotope effect of all photoreaction processes using laser flash photolysis and laser patch clamp, respectively. Spectroscopic and electrophysiological results provided the following understanding of the channel gating: the retinal chromophore highly twists upon the retinal Schiff base (RSB) deprotonation, causing the surrounding helices to move and open the channel. The ion-conducting pathway includes the RSB, where inflowing water mediates the proton to the deprotonated RSB. The twisting of the retinal chromophore relaxes upon the RSB reprotonation, which closes the channel. The RSB reprotonation rate-limits the channel closing.
Collapse
Affiliation(s)
- Keisei Shibata
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Kazumasa Oda
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Yuji Hazama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Ryohei Ono
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shunki Takaramoto
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Reza Bagherzadeh
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hiromu Yawo
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Nureki
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Keiichi Inoue
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hidefumi Akiyama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
6
|
Yu Y, Yang C, Baggioli M, Phillips AE, Zaccone A, Zhang L, Kajimoto R, Nakamura M, Yu D, Hong L. The ω 3 scaling of the vibrational density of states in quasi-2D nanoconfined solids. Nat Commun 2022; 13:3649. [PMID: 35752735 PMCID: PMC9233700 DOI: 10.1038/s41467-022-31349-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The vibrational properties of crystalline bulk materials are well described by Debye theory, which successfully predicts the quadratic ω2 low-frequency scaling of the vibrational density of states. However, the analogous framework for nanoconfined materials with fewer degrees of freedom has been far less well explored. Using inelastic neutron scattering, we characterize the vibrational density of states of amorphous ice confined inside graphene oxide membranes and we observe a crossover from the Debye ω2 scaling to an anomalous ω3 behaviour upon reducing the confinement size L. Additionally, using molecular dynamics simulations, we confirm the experimental findings and prove that such a scaling appears in both crystalline and amorphous solids under slab-confinement. We theoretically demonstrate that this low-frequency ω3 law results from the geometric constraints on the momentum phase space induced by confinement along one spatial direction. Finally, we predict that the Debye scaling reappears at a characteristic frequency ω× = vL/2π, with v the speed of sound of the material, and we confirm this quantitative estimate with simulations. A description of the vibrational properties of amorphous ice confined in graphene oxide membranes, as an exemplary nanoconfined material, is presented. Inelastic neutron scattering experiments and molecular dynamics simulations show anomalous deviations from standard bulk behavior.
Collapse
Affiliation(s)
- Yuanxi Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chenxing Yang
- School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Matteo Baggioli
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China.
| | - Anthony E Phillips
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133, Milan, Italy.,Cavendish Laboratory, University of Cambridge, CB3 0HE, Cambridge, UK
| | - Lei Zhang
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China.,School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ryoichi Kajimoto
- J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, 319-1195, Japan
| | - Mitsutaka Nakamura
- J-PARC Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, 319-1195, Japan
| | - Dehong Yu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Shanghai National Center for Applied Mathematics (SJTU Center), Shanghai Jiao Tong University, 200240, Shanghai, China. .,Shanghai Artificial Intelligence Laboratory, 200232, Shanghai, China. .,School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
7
|
Schubert L, Langner P, Ehrenberg D, Lorenz-Fonfria VA, Heberle J. Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy. J Chem Phys 2022; 156:204201. [PMID: 35649857 DOI: 10.1063/5.0088526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mid-IR spectroscopy is a powerful and label-free technique to investigate protein reactions. In this study, we use quantum-cascade-laser-based dual-comb spectroscopy to probe protein conformational changes and protonation events by a single-shot experiment. By using a well-characterized membrane protein, bacteriorhodopsin, we provide a comparison between dual-comb spectroscopy and our homebuilt tunable quantum cascade laser (QCL)-based scanning spectrometer as tools to monitor irreversible reactions with high time resolution. In conclusion, QCL-based infrared spectroscopy is demonstrated to be feasible for tracing functionally relevant protein structural changes and proton translocations by single-shot experiments. Thus, we envisage a bright future for applications of this technology for monitoring the kinetics of irreversible reactions as in (bio-)chemical transformations.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Institute of Molecular Science, Universitat de Valencia, Catedrático José Beltrán Martínez, No. 2, 46980 Paterna, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
8
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|
9
|
Klocke JL, Kottke T. A quantum cascade laser setup for studying irreversible photoreactions in H 2O with nanosecond resolution and microlitre consumption. Phys Chem Chem Phys 2020; 22:26459-26467. [PMID: 33185227 DOI: 10.1039/d0cp03164j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved infrared spectroscopy on irreversible reactions requires in general an exchange of sample for thousands of acquisitions leading to high sample consumption. Here, we present a setup employing a modern quantum cascade laser (QCL) as a probe light source to record time-resolved difference spectra of irreversible photoreactions in H2O. The combination of the focused QCL with a pressure-tolerant flow cell and a micrometre stage orthogonal to the flow allowed us to drastically reduce the sample consumption. We investigated the irreversible photoreduction of the cofactor flavin mononucleotide (FMN) in H2O, which is a common reaction taking place in biological photoreceptors. A broad time range from 20 nanoseconds to 1 second was accessible, because the approach minimized any signal drift by the flow. Kinetics were recorded at 46 selected wavenumbers consuming 12 microlitres for a complete dataset. The tuning range of 1490-1740 cm-1 included relevant carbonyl vibrations and the region of strong water absorption at around 1650 cm-1. A continuous dataset in the spectral dimension was generated by applying a fit with a sum of Lorentzians. Subsequent global analysis allowed us to resolve reference spectra and kinetics of the photoreaction proceeding from the triplet excited state via the intermediate flavin anion radical to the product, the fully reduced state of FMN. Accordingly, the neutral radical state is not populated in the disproportionation. The approach strongly facilitates the spectroscopic access to irreversible reactions of flavin-containing photoreceptors and photoenzymes with high time resolution and small sample consumption.
Collapse
Affiliation(s)
- Jessica L Klocke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | | |
Collapse
|
10
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
11
|
Souza BE, Donà L, Titov K, Bruzzese P, Zeng Z, Zhang Y, Babal AS, Möslein AF, Frogley MD, Wolna M, Cinque G, Civalleri B, Tan JC. Elucidating the Drug Release from Metal-Organic Framework Nanocomposites via In Situ Synchrotron Microspectroscopy and Theoretical Modeling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5147-5156. [PMID: 31904920 DOI: 10.1021/acsami.9b21321] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein, we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.
Collapse
Affiliation(s)
- Barbara E Souza
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Lorenzo Donà
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , Torino 10125 , Italy
| | - Kirill Titov
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Paolo Bruzzese
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , Torino 10125 , Italy
| | - Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Yang Zhang
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Arun S Babal
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Annika F Möslein
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Mark D Frogley
- Diamond Light Source , Harwell Campus , Chilton , Oxford OX11 0DE , United Kingdom
| | - Magda Wolna
- Diamond Light Source , Harwell Campus , Chilton , Oxford OX11 0DE , United Kingdom
| | - Gianfelice Cinque
- Diamond Light Source , Harwell Campus , Chilton , Oxford OX11 0DE , United Kingdom
| | - Bartolomeo Civalleri
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , Torino 10125 , Italy
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| |
Collapse
|
12
|
Atomistic Insight into the Role of Threonine 127 in the Functional Mechanism of Channelrhodopsin-2. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Channelrhodopsins (ChRs) belong to the unique class of light-gated ion channels. The structure of channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) has been resolved, but the mechanistic link between light-induced isomerization of the chromophore retinal and channel gating remains elusive. Replacements of residues C128 and D156 (DC gate) resulted in drastic effects in channel closure. T127 is localized close to the retinal Schiff base and links the DC gate to the Schiff base. The homologous residue in bacteriorhodopsin (T89) has been shown to be crucial for the visible absorption maximum and dark–light adaptation, suggesting an interaction with the retinylidene chromophore, but the replacement had little effect on photocycle kinetics and proton pumping activity. Here, we show that the T127A and T127S variants of CrChR2 leave the visible absorption maximum unaffected. We inferred from hybrid quantum mechanics/molecular mechanics (QM/MM) calculations and resonance Raman spectroscopy that the hydroxylic side chain of T127 is hydrogen-bonded to E123 and the latter is hydrogen-bonded to the retinal Schiff base. The C=N–H vibration of the Schiff base in the T127A variant was 1674 cm−1, the highest among all rhodopsins reported to date. We also found heterogeneity in the Schiff base ground state vibrational properties due to different rotamer conformations of E123. The photoreaction of T127A is characterized by a long-lived P2380 state during which the Schiff base is deprotonated. The conservative replacement of T127S hardly affected the photocycle kinetics. Thus, we inferred that the hydroxyl group at position 127 is part of the proton transfer pathway from D156 to the Schiff base during rise of the P3530 intermediate. This finding provides molecular reasons for the evolutionary conservation of the chemically homologous residues threonine, serine, and cysteine at this position in all channelrhodopsins known so far.
Collapse
|
13
|
Ehrenberg D, Varma N, Deupi X, Koyanagi M, Terakita A, Schertler GFX, Heberle J, Lesca E. The Two-Photon Reversible Reaction of the Bistable Jumping Spider Rhodopsin-1. Biophys J 2019; 116:1248-1258. [PMID: 30902364 PMCID: PMC6451042 DOI: 10.1016/j.bpj.2019.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bistable opsins are photopigments expressed in both invertebrates and vertebrates. These light-sensitive G-protein-coupled receptors undergo a reversible reaction upon illumination. A first photon initiates the cis to trans isomerization of the retinal chromophore—attached to the protein through a protonated Schiff base—and a series of transition states that eventually results in the formation of the thermally stable and active Meta state. Excitation by a second photon reverts this process to recover the original ground state. On the other hand, monostable opsins (e.g., bovine rhodopsin) lose their chromophore during the decay of the Meta II state (i.e., they bleach). Spectroscopic studies on the molecular details of the two-photon cycle in bistable opsins are limited. Here, we describe the successful expression and purification of recombinant rhodopsin-1 from the jumping spider Hasarius adansoni (JSR1). In its natural configuration, spectroscopic characterization of JSR1 is hampered by the similar absorption spectra in the visible spectrum of the inactive and active states. We solved this issue by separating their absorption spectra by replacing the endogenous 11-cis retinal chromophore with the blue-shifted 9-cis JSiR1. With this system, we used time-resolved ultraviolet-visible spectroscopy after pulsed laser excitation to obtain kinetic details of the rise and decay of the photocycle intermediates. We also used resonance Raman spectroscopy to elucidate structural changes of the retinal chromophore upon illumination. Our data clearly indicate that the protonated Schiff base is stable throughout the entire photoreaction. We additionally show that the accompanying conformational changes in the protein are different from those of monostable rhodopsin, as recorded by light-induced FTIR difference spectroscopy. Thus, we envisage JSR1 as becoming a model system for future studies on the reaction mechanisms of bistable opsins, e.g., by time-resolved x-ray crystallography.
Collapse
Affiliation(s)
- David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Niranjan Varma
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Xavier Deupi
- Division of Neutrons and Muons-Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, Villigen, Switzerland
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Gebhard F X Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany.
| | - Elena Lesca
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Bühl E, Eberhardt P, Bamann C, Bamberg E, Braun M, Wachtveitl J. Ultrafast Protein Response in Channelrhodopsin-2 Studied by Time-Resolved Infrared Spectroscopy. J Phys Chem Lett 2018; 9:7180-7184. [PMID: 30525663 DOI: 10.1021/acs.jpclett.8b03382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrafast infrared transient absorption in the carbonyl vibrational region of protonated aspartate and glutamate residues in channelrhodopsin-2 from Chlamydomonas reinhardtii shows immediate protein response to retinal excitation. The observed difference bands are formed directly after the excitation on the subpicosecond time scale and were assigned to side chains in the retinal vicinity, such as D156 and E90. This finding implies an ultrafast and effective energy transfer from the retinal to its environment via hydrogen-bonded networks and reveals extraordinarily strong chromophore-protein coupling and intense interaction within the protein. Relevance to the protein function as an optically gated ion channel is discussed.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Peter Eberhardt
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics , Max von Laue-Straße 3 , 60438 Frankfurt am Main , Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics , Max von Laue-Straße 3 , 60438 Frankfurt am Main , Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| |
Collapse
|
15
|
Saita M, Pranga-Sellnau F, Resler T, Schlesinger R, Heberle J, Lorenz-Fonfria VA. Photoexcitation of the P4480 State Induces a Secondary Photocycle That Potentially Desensitizes Channelrhodopsin-2. J Am Chem Soc 2018; 140:9899-9903. [DOI: 10.1021/jacs.8b03931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mattia Saita
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Franziska Pranga-Sellnau
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tom Resler
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Victor A. Lorenz-Fonfria
- Institute of Molecular Science, Universitat de València, 46980 Paterna, Spain
- Department of Biochemistry and Molecular Biology, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
16
|
Ito S, Kandori H, Lorenz-Fonfria VA. Potential Second-Harmonic Ghost Bands in Fourier Transform Infrared (FT-IR) Difference Spectroscopy of Proteins. APPLIED SPECTROSCOPY 2018; 72:956-963. [PMID: 29350538 DOI: 10.1177/0003702818757521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fourier transform infrared (FT-IR) difference absorption spectroscopy is a common method for studying the structural and dynamical aspects behind protein function. In particular, the 2800-1800 cm-1 spectral range has been used to obtain information about internal (deuterated) water molecules, as well as site-specific details about cysteine residues and chemically modified and artificial amino acids. Here, we report on the presence of ghost bands in cryogenic light-induced FT-IR difference spectra of the protein bacteriorhodopsin. The presence of these ghost bands can be particularly problematic in the 2800-1900 cm-1 region, showing intensities similar to O-D vibrations from water molecules. We demonstrate that they arise from second harmonics from genuine chromophore bands located in the 1400-850 cm-1 region, generated by double-modulation artifacts caused from reflections of the IR beam at the sample and at the cryostat windows back to the interferometer (inter-reflections). The second-harmonic ghost bands can be physically removed by placing an optical filter of suitable cutoff in the beam path, but at the cost of losing part of the multiplexing advantage of FT-IR spectroscopy. We explored alternatives to the use of optical filters. Tilting the cryostat windows was effective in reducing the intensity of the second harmonic artifacts but tilting the sample windows was not, presumably by their close proximity to the focal point of the IR beam. We also introduce a simple numerical post-processing approach that can partially, but not fully, correct for second-harmonic ghost bands in FT-IR difference spectra.
Collapse
Affiliation(s)
- Shota Ito
- 1 Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- 1 Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- 2 OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Victor A Lorenz-Fonfria
- 3 Institute of Molecular Science (ICMol), Universitat de València, Paterna, Spain
- 4 Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
| |
Collapse
|
17
|
Schwaighofer A, Montemurro M, Freitag S, Kristament C, Culzoni MJ, Lendl B. Beyond Fourier Transform Infrared Spectroscopy: External Cavity Quantum Cascade Laser-Based Mid-infrared Transmission Spectroscopy of Proteins in the Amide I and Amide II Region. Anal Chem 2018; 90:7072-7079. [DOI: 10.1021/acs.analchem.8b01632] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Milagros Montemurro
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Stephan Freitag
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Christian Kristament
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - María J. Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| |
Collapse
|
18
|
Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R, Pranga-Sellnau F, Bondar AN, Heberle J, Brown LS. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Phys Chem Chem Phys 2018; 20:3184-3199. [PMID: 29057415 DOI: 10.1039/c7cp06068h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are well known as versatile and ubiquitous light-driven ion transporters and photosensors. While the proton transport mechanism has been studied in great detail, much less is known about various modes of anion transport. Until recently, only two main groups of light-driven anion pumps were known, archaeal halorhodopsins (HRs) and bacterial chloride pumps (known as ClRs or NTQs). Last year, another group of cyanobacterial anion pumps with a very distinct primary structure was reported. Here, we studied the chloride-transporting photocycle of a representative of this new group, Mastigocladopsis repens rhodopsin (MastR), using time-resolved spectroscopy in the infrared and visible ranges and site-directed mutagenesis. We found that, in accordance with its unique amino acid sequence containing many polar residues in the transmembrane region of the protein, its photocycle features a number of unusual molecular events not known for other anion-pumping rhodopsins. It appears that light-driven chloride ion transfers by MastR are coupled with translocation of protons and water molecules as well as perturbation of several polar sidechains. Of particular interest is transient deprotonation of Asp-85, homologous to the cytoplasmic proton donor of light-driven proton pumps (such as Asp-96 of bacteriorhodopsin), which may serve as a regulatory mechanism.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schultz BJ, Mohrmann H, Lorenz-Fonfria VA, Heberle J. Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:666-674. [PMID: 28110813 DOI: 10.1016/j.saa.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
We have developed a spectrometer based on tunable quantum cascade lasers (QCLs) for recording time-resolved absorption spectra of proteins in the mid-infrared range. We illustrate its performance by recording time-resolved difference spectra of bacteriorhodopsin in the carboxylic range (1800-1700cm-1) and on the CO rebinding reaction of myoglobin (1960-1840cm-1), at a spectral resolution of 1cm-1. The spectrometric setup covers the time range from 4ns to nearly a second with a response time of 10-15ns. Absorption changes as low as 1×10-4 are detected in single-shot experiments at t>1μs, and of 5×10-6 in kinetics obtained after averaging 100 shots. While previous time-resolved IR experiments have mostly been conducted on hydrated films of proteins, we demonstrate here that the brilliance of tunable quantum cascade lasers is superior to perform ns time-resolved experiments even in aqueous solution (H2O).
Collapse
Affiliation(s)
- Bernd-Joachim Schultz
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hendrik Mohrmann
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany; Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
20
|
pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin. Proc Natl Acad Sci U S A 2017; 114:E10909-E10918. [PMID: 29203649 DOI: 10.1073/pnas.1707993114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well below 1,700 cm-1 The first contribution corresponds to deprotonation of the proton release complex (PRC), a complex in the extracellular domain of bacteriorhodopsin where an excess proton is shared by a cluster of internal water molecules and/or ionic E194/E204 carboxylic groups. We assign the second component of the continuum band to the proton uptake complex, a cluster with an excess proton reminiscent to the PRC but located in the cytoplasmic domain and possibly stabilized by D38. Our findings refine the current interpretation of the continuum band and call for a reevaluation of the last proton transfer steps in bacteriorhodopsin.
Collapse
|
21
|
Mohrmann H, Heberle J. Reply to "Comment on 'Transient Conformational Changes of Sensory Rhodopsin II Investigated by Vibrational Stark Effect Probes'". J Phys Chem B 2017; 121:7397-7399. [PMID: 28689420 DOI: 10.1021/acs.jpcb.7b03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hendrik Mohrmann
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
22
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
23
|
Yamauchi Y, Konno M, Ito S, Tsunoda SP, Inoue K, Kandori H. Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys Physicobiol 2017. [PMID: 28630812 PMCID: PMC5468465 DOI: 10.2142/biophysico.14.0_57] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microbial rhodopsins are membrane proteins found widely in archaea, eubacteria and eukaryotes (fungal and algal species). They have various functions, such as light-driven ion pumps, light-gated ion channels, light sensors and light-activated enzymes. A light-driven proton pump bacteriorhodopsin (BR) contains a DTD motif at positions 85, 89, and 96, which is unique to archaeal proton pumps. Recently, channelrhodopsins (ChRs) containing the DTD motif, whose sequential identity is ~20% similar to BR and to cation ChRs in Chlamydomonas reinhardtii (CrCCRs), were found. While extensive studies on ChRs have been performed with CrCCR2, the molecular properties of DTD ChRs remain an intrigue. In this paper, we studied a DTD rhodopsin from G. theta (GtCCR4) using electrophysiological measurements, flash photolysis, and low-temperature difference FTIR spectroscopy. Electrophysiological measurements clearly showed that GtCCR4 functions as a light-gated cation channel, similar to other G. theta DTD ChRs (GtCCR1-3). Light-driven proton pump activity was also suggested for GtCCR4. Both electrophysiological and flash photolysis experiments showed that channel closing occurs upon reprotonation of the Schiff base, suggesting that the dynamics of retinal and channels are tightly coupled in GtCCR4. From Fourier transform infrared (FTIR) spectroscopy at 77 K, we found that the primary reaction is an all-trans to a 13-cis photoisomerization, like other microbial rhodopsins, although perturbations in the secondary structure were much smaller in GtCCR4 than in CrCCR2.
Collapse
Affiliation(s)
- Yumeka Yamauchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
24
|
Kottke T, Lórenz-Fonfría VA, Heberle J. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. J Phys Chem B 2016; 121:335-350. [PMID: 28100053 DOI: 10.1021/acs.jpcb.6b09222] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
25
|
Mohrmann H, Kube I, Lórenz-Fonfría VA, Engelhard M, Heberle J. Transient Conformational Changes of Sensory Rhodopsin II Investigated by Vibrational Stark Effect Probes. J Phys Chem B 2016; 120:4383-7. [DOI: 10.1021/acs.jpcb.6b01900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hendrik Mohrmann
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ines Kube
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Víctor A. Lórenz-Fonfría
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Engelhard
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Joachim Heberle
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|