1
|
Cheon J, Son J, Lim S, Jeong Y, Park JH, Mitchell RJ, Kim JU, Jeong J. Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase. SOFT MATTER 2024; 20:7313-7320. [PMID: 39248026 DOI: 10.1039/d4sm00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e., the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m-1 at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases.
Collapse
Affiliation(s)
- Jiyong Cheon
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Joowang Son
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Sungbin Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yundon Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Robert J Mitchell
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jaeup U Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
2
|
Shvetsov S, Orlova T, Hayrapetyan A, Vasil'ev A, Rafayelyan M. Light-controllable liquid crystal platform for microparticle oscillations and transport. SOFT MATTER 2024; 20:6920-6928. [PMID: 39161989 DOI: 10.1039/d4sm00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Liquid crystal colloids manifest complex motion caused by external stimuli, but tunable and addressable control of microsized objects remains a challenge. This study aims to demonstrate light-driven trapping, transport, and sustained periodic motions of microparticles by employing liquid crystal films as a light-controllable colloidal platform. The diverse motions of microscopic particles result from Marangoni convection coupled with elastic deformations in free-surface liquid crystal films subjected to light beam heating. The specific mode of particle motion, including damped and sustained oscillations, also combined with sustained rotation, is defined by the liquid crystal chirality, particle surface treatment, film thickness, and the power of the tightly focused light beam. The results reveal that free-surface liquid crystals provide a unique platform for the indirect optical manipulation of microscopic objects, paving the way for novel applications in microfluidic tools, particle sorting and transport, micropatterning, and various micromachines.
Collapse
Affiliation(s)
- Sergey Shvetsov
- Institute of Physics, Yerevan State University, 1 Alex Manoogian st., Yerevan 0025, Armenia.
| | - Tetiana Orlova
- Institute of Physics, Yerevan State University, 1 Alex Manoogian st., Yerevan 0025, Armenia.
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova st., Saint-Petersburg 191002, Russia
| | - Aleksandr Hayrapetyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian st., Yerevan 0025, Armenia.
| | - Alexey Vasil'ev
- Innovation Center for Nanoscience and Technologies, A.B. Nalbandyan Institute of Chemical Physics NAS RA, 5/2 P. Sevak st., Yerevan 0014, Armenia
| | - Mushegh Rafayelyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian st., Yerevan 0025, Armenia.
| |
Collapse
|
3
|
Faidiuk Y, Skivka L, Zelena P, Tereshchenko O, Buluy O, Pergamenshchik VM, Nazarenko V. Anchoring-induced nonmonotonic velocity versus temperature dependence of motile bacteria in a lyotropic nematic liquid crystal. Phys Rev E 2021; 104:054603. [PMID: 34942701 DOI: 10.1103/physreve.104.054603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
The elastic and viscous properties of lyotropic chromonic liquid crystals have a very sharp, often exponential temperature dependence. Self-propelled bacteria swimming in this viscoelastic medium induce director deformations which can strongly influence their velocity, and we study the temperature behavior of their motility in the whole range of the nematic phase. We observe experimentally that, with increasing temperature, while the viscosity drops exponentially and the frequency of the flagellum rotation grows linearly, the swimmers' speed first conventionally increases but then, above some crossover temperature, slows down and at the same time bacteria-induced director distortions become visible. It is shown that the physics behind this temperature-driven effect is in a sharp rise in the ability of the bacterium's flagellum to induce director deformations. As temperature increases, the splay and bend elastic constants sharply decrease and the anchoring extrapolation length of the flagellum surface gets shorter and shorter. At the crossover temperature the resulting effective anchoring effect dominates the fast dropping viscosity and the distortion strengthens. As a result, a fraction of the torque the flagellum applies for the propulsion is spent for the elastic degrees of freedom, which results in a bacterium slowdown. To find the director distortions, the flagellum is presented as a collection of anchoring-induced elastic monopoles, and the bacterium velocity is found from the balance of the energy spent for the propulsion and the viscous drag and nematodynamic dissipation.
Collapse
Affiliation(s)
- Yu Faidiuk
- ESC Institute of Biology and Medicine, Taras Shevchenko National University, Kyiv 03022, Ukraine.,D.K. Zabolotny Institute of Microbiology and Virology, NASU, Kyiv 03680, Ukraine
| | - L Skivka
- ESC Institute of Biology and Medicine, Taras Shevchenko National University, Kyiv 03022, Ukraine
| | - P Zelena
- ESC Institute of Biology and Medicine, Taras Shevchenko National University, Kyiv 03022, Ukraine
| | | | - O Buluy
- Institute of Physics, NASU, Kyiv 03028, Ukraine
| | | | - V Nazarenko
- Institute of Physics, NASU, Kyiv 03028, Ukraine
| |
Collapse
|
4
|
Photodynamic control of bacterial motility by means of azobenzene molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Mandal S, Mazza MG. Multiparticle collision dynamics simulations of a squirmer in a nematic fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:64. [PMID: 33939056 PMCID: PMC8093181 DOI: 10.1140/epje/s10189-021-00072-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/16/2021] [Indexed: 05/26/2023]
Abstract
We study the dynamics of a squirmer in a nematic liquid crystal using the multiparticle collision dynamics (MPCD) method. A recently developed nematic MPCD method [Phys. Rev. E 99, 063319 (2019)] which employs a tensor order parameter to describe the spatial and temporal variations of the nematic order is used to simulate the suspending anisotropic fluid. Considering both nematodynamic effects (anisotropic viscosity and elasticity) and thermal fluctuations, in the present study, we couple the nematic MPCD algorithm with a molecular dynamics (MD) scheme for the squirmer. A unique feature of the proposed method is that the nematic order, the fluid, and the squirmer are all represented in a particle-based framework. To test the applicability of this nematic MPCD-MD method, we simulate the dynamics of a spherical squirmer with homeotropic surface anchoring conditions in a bulk domain. The importance of anisotropic viscosity and elasticity on the squirmer's speed and orientation is studied for different values of self-propulsion strength and squirmer type (pusher, puller or neutral). In sharp contrast to Newtonian fluids, the speed of the squirmer in a nematic fluid depends on the squirmer type. Interestingly, the speed of a strong pusher is smaller in the nematic fluid than for the Newtonian case. The orientational dynamics of the squirmer in the nematic fluid also shows a non-trivial dependence on the squirmer type. Our results compare well with existing experimental and numerical data. The full particle-based framework could be easily extended to model the dynamics of multiple squirmers in anisotropic fluids.
Collapse
Affiliation(s)
- Shubhadeep Mandal
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Marco G Mazza
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany.
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, Loughborough, United Kingdom.
| |
Collapse
|
6
|
Dadalyan T, Galstian T. Local pulses of electrical potential can induce long-range transient excitations in self-aligned molecular films. Sci Rep 2019; 9:12346. [PMID: 31451713 PMCID: PMC6710425 DOI: 10.1038/s41598-019-48836-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Natural liquids can contain self-aligned molecules (such as liquid crystals and biological membranes) which give them unique properties of anisotropic diffusion, coupling between the molecular orientation and flow, etc. Here, we describe the observation of new phenomena in those materials: long-distance transport and molecular orientation waves that are induced by pulses of spatially localized electrical potential. As a result, the morphological properties of the material are significantly altered well beyond the reach of the electrical field. The local dielectric torque-induced reduction of the effective molecular volume and corresponding pressure gradients are in the origin of these phenomena. Our observations are made for electric fields that are an order of magnitude smaller than those present in biological membranes. Thus, this discovery may have important impact on the understanding of the operation of these membranes and on the dynamics of action potential propagation in neural cells. The corresponding possible influence of observed excitation mechanisms on the ionic gates and the role of myelin sheath are discussed.
Collapse
Affiliation(s)
- T Dadalyan
- Center for Optics, Photonics and Laser, Department of Physics, Engineering Physics and Optics, Université Laval. 2375 Rue de la Terrasse, Québec (Qc), G1V 0A6, Canada.,Yerevan State University, 1 Alek Manukyan St, Yerevan, 0025, Armenia
| | - T Galstian
- Center for Optics, Photonics and Laser, Department of Physics, Engineering Physics and Optics, Université Laval. 2375 Rue de la Terrasse, Québec (Qc), G1V 0A6, Canada.
| |
Collapse
|
7
|
Duchesne I, Galstian T, Rainville S. Transient locking of the hook procures enhanced motility to flagellated bacteria. Sci Rep 2017; 7:16354. [PMID: 29180634 PMCID: PMC5703839 DOI: 10.1038/s41598-017-16562-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/14/2017] [Indexed: 11/09/2022] Open
Abstract
Flagellated bacteria often proliferate in inhomogeneous environments, such as biofilms, swarms and soil. In such media, bacteria are observed to move efficiently only if they can get out of "dead ends" by changing drastically their swimming direction, and even to completely reverse it. Even though these reorientations are ubiquitous, we have only recently begun to describe and understand how they happen. In the present work, we visualized the flagella of bacteria swimming in a soft agar solution. The surprising observation that the filaments do not rotate while being flipped from one side of the cell to the other suggests that reversals are driven directly by the motor rather than by the thrust created by the rotating filament. This was confirmed by observing bacteria in a liquid crystal, where the linear movement of bacteria greatly simplifies the analysis. These observations suggest that the reversal and reorientation processes involve a temporary locking of the flagellum's hook, which is the normally flexible joint between the rotary motor and the long helical filament that propels the cell. This newly described locked-hook mode occurs only when the motor switches to a clockwise rotation. That correlates with other phenomena that are triggered by a switch in one direction and not the other.
Collapse
Affiliation(s)
- Ismaël Duchesne
- Department of Physics, Engineering Physics and Optics, Center for Optics, Photonics and Lasers, Laval University, Quebec city, G1V 0A6, Canada
| | - Tigran Galstian
- Department of Physics, Engineering Physics and Optics, Center for Optics, Photonics and Lasers, Laval University, Quebec city, G1V 0A6, Canada
| | - Simon Rainville
- Department of Physics, Engineering Physics and Optics, Center for Optics, Photonics and Lasers, Laval University, Quebec city, G1V 0A6, Canada.
| |
Collapse
|
8
|
Gómez-González M, Del Álamo JC. Two-point particle tracking microrheology of nematic complex fluids. SOFT MATTER 2016; 12:5758-79. [PMID: 27270816 PMCID: PMC6234986 DOI: 10.1039/c6sm00769d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many biological and technological complex fluids exhibit tight microstructural alignment that confers them nematic mechanical properties. Among these we count liquid crystals and biopolymer networks, which are often available in microscopic amounts. However, current microrheological methods cannot measure the directional viscoelastic coefficients that appear in the constitutive relation of nematic complex fluids. This article presents directional two-point particle-tracking microrheology (D2PTM) - a novel microrheology technique to determine these coefficients. We establish the theoretical foundation for D2PTM by analyzing the motion of a probing microscopic particle embedded in a nematic complex fluid, and the mutual hydrodynamic interactions between pairs of distant particles. From this analysis, we generalize the formulation of two-point particle tracking microrheology for nematic complex fluids, and demonstrate that the new formulation provides sufficient information to fully characterize the anisotropic viscoelastic coefficients of such materials. We test D2PTM by simulating the Brownian motion of particles in nematic viscoelastic fluids with prescribed directional frequency-dependent shear moduli, showing that D2PTM accurately recovers the prescribed shear moduli. Furthermore, we experimentally validate D2PTM by applying it to a lyotropic nematic liquid crystal, and demonstrate that this new microrheology method provides results in agreement with dynamic light scattering measurements. Lastly, we illustrate the experimental application of the new technique to characterize nematic F-actin solutions. These experiments constitute the first microrheological measurement of the directional viscoelastic coefficients of an anisotropic soft material.
Collapse
Affiliation(s)
- Manuel Gómez-González
- Mechanical & Aerospace Engineering Department, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411, USA.
| | - Juan C Del Álamo
- Mechanical & Aerospace Engineering Department, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411, USA. and Institute for Engineering in Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0435, USA
| |
Collapse
|