1
|
Müller WA, Sarkis JR, Marczak LDF, Muniz AR. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184364. [PMID: 38901662 DOI: 10.1016/j.bbamem.2024.184364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The combined application of electric fields and ultrasonic waves has shown promise in controlling cell membrane permeability, potentially resulting in synergistic effects that can be explored in the biotechnology industry. However, further clarification on how these processes interact is still needed. The objective of the present study was to investigate the atomic-scale effects of these processes on a DPPC lipid bilayer using molecular dynamics simulations. For higher electric fields, capable of independently forming pores, the application of an ultrasonic wave in the absence of cavitation yielded no additional effects on pore formation. However, for lower electric fields, the reduction in bilayer thickness induced by the shock wave catalyzed the electroporation process, effectively shortening the mean path that water molecules must traverse to form pores. When cavitation was considered, synergistic effects were evident only if the wave alone was able to generate pores through the formation of a water nanojet. In these cases, sonoporation acted as a mean to focus the electroporation effects on the initial pore formed by the nanojet. This study contributes to a better understanding of the synergy between electric fields and ultrasonic waves and to an optimal selection of processing parameters in practical applications of these processes.
Collapse
Affiliation(s)
- Wagner Augusto Müller
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | - Júlia Ribeiro Sarkis
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil
| | | | - André Rodrigues Muniz
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Chemical Engineering, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Finan JD, Vogt TE, Samei Y. Cavitation in blunt impact traumatic brain injury. EXPERIMENTS IN FLUIDS 2024; 65:114. [PMID: 39036013 PMCID: PMC11255084 DOI: 10.1007/s00348-024-03853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Traumatic brain injury (TBI) poses a major public health challenge. No proven therapies for the condition exist so protective equipment that prevents or mitigates these injuries plays a critical role in minimizing the societal burden of this condition. Our ability to optimize protective equipment depends on our capacity to relate the mechanics of head impact events to morbidity and mortality. This capacity, in turn, depends on correctly identifying the mechanisms of injury. For several decades, a controversial theory of TBI biomechanics has attributed important classes of injury to cavitation inside the cranial vault during blunt impact. This theory explains counter-intuitive clinical observations, including the coup-contre-coup pattern of injury. However, it is also difficult to validate experimentally in living subjects. Also, blunt impact TBI is a broad term that covers a range of different head impact events, some of which may be better described by cavitation theory than others. This review surveys what has been learned about cavitation through mathematical modeling, physical modeling, and experimentation with living tissues and places it in context with competing theories of blunt injury biomechanics and recent research activity in the field in an attempt to understand what the theory has to offer the next generation of innovators in TBI biomechanics.
Collapse
Affiliation(s)
- John D. Finan
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Thea E. Vogt
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Yasaman Samei
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL USA
| |
Collapse
|
3
|
Wei T, Zhou M, Gu L, Zhou Y, Li M. How Shockwaves Open Tight Junctions of Blood–Brain Barrier: Comparison of Three Biomechanical Effects. J Phys Chem B 2022; 126:5094-5102. [DOI: 10.1021/acs.jpcb.2c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Wei
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
4
|
Wei T, Zhou M, Gu L, Yang H, Zhou Y, Li M. A Novel Gating Mechanism of Aquaporin-4 Water Channel Mediated by Blast Shockwaves for Brain Edema. J Phys Chem Lett 2022; 13:2486-2492. [PMID: 35271290 DOI: 10.1021/acs.jpclett.2c00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the principal water channel in the brain, aquaporin-4 (AQP4) plays a vital role in brain edema, but its role in blast brain edema is unclear. On the basis of molecular simulations, we reveal the atomically detailed picture of AQP4 in response to blast shockwaves. The results show that the shockwave alone closes the AQP4 channel; however, shock-induced bubble collapse opens it. The jet from bubble collapse forcefully increases the distance between helices and the tilt angles of six helices relative to the membrane vertical direction in a very short time. The average channel size increases about 2.6 times, and the water flux rate is nearly 20 times higher than for normal states. It is responsible for abnormal water transport and a potential cause of acute blast brain edema. Additionally, the open AQP4 channel quickly returns to its normal state, which is in turn helpful for edema absorption. Thus, a novel gating mechanism for AQP4 related to the secondary structure change has been provided, which is different from the previous residue-mediated gating mechanism.
Collapse
Affiliation(s)
- Tong Wei
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
5
|
Mahmud KAHA, Hasan F, Khan MI, Adnan A. Shock-Induced Damage Mechanism of Perineuronal Nets. Biomolecules 2021; 12:biom12010010. [PMID: 35053158 PMCID: PMC8774183 DOI: 10.3390/biom12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
The perineuronal net (PNN) region of the brain’s extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to shock loading and to understand the mechanical properties of different PNN components such as glycan, GAG, and protein. In this study, we evaluated the mechanical strength of PNN molecules and the interfacial strength between the PNN components. Afterward, we assessed the PNN molecules’ damage efficiency under various conditions such as shock speed, preexisting bubble, and boundary conditions. The secondary structure altercation of the protein molecules of the PNN was analyzed to evaluate damage intensity under varying shock speeds. At a higher shock speed, damage intensity is more elevated, and hyaluronan (glycan molecule) is most likely to break at the rigid junction. The primary structure of the protein molecules is least likely to fail. Instead, the molecules’ secondary bonds will be altered. Our study suggests that the number of hydrogen bonds during the shock wave propagation is reduced, which leads to the change in protein conformations and damage within the PNN structure. As such, we found a direct connection between shock wave intensity and PNN damage.
Collapse
|
6
|
Wei T, Gu L, Zhou M, Zhou Y, Yang H, Li M. Impact of Shock-Induced Cavitation Bubble Collapse on the Damage of Cell Membranes with Different Lipid Peroxidation Levels. J Phys Chem B 2021; 125:6912-6920. [PMID: 34133190 DOI: 10.1021/acs.jpcb.1c02483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the interaction mechanism between shock waves and cells is critical for advancing the medical applications of shock waves, we still have little understanding about it. This work aims to study the response of diseased cells subjected to lipid peroxidation to the nanojet from shock wave-induced bubble collapse by using the coarse-grained molecular dynamics simulation. Factors considered in the simulations include the shock velocity (up), movement time of piston (τp), bubble size (R), and peroxidation level of membranes. Here, we mainly focus on the role of peroxidation levels, that is, the degree (%) and the distribution of oxidized lipids in membranes. The results indicate that the shock damage threshold (up at which the pore in membranes is formed) of peroxidation membranes is less than that of normal membranes and decreases with the peroxidation degree. Importantly, the distribution of oxidized lipids has more effect on the damage threshold than the peroxidation degree. The threshold of membrane with 33% localized oxidized lipids is lower than that of membrane with 50% average oxidized lipids. The results can be explained by the stretching modulus (κs) and bending modulus (κb) of cell membranes. For example, the κb value (4.3 × 10-20 J) of 100% peroxidation membrane is about half of that (8.4 × 10-20 J) of a membrane without peroxidation. A lower modulus means high deformation under the same impact. Further analysis shows that peroxidation introduces a polar hydrophobic group to the tail of phospholipids that increases the hydrophilicity of tails and warps the tail of phospholipids toward the membrane-water interface, resulting in looser accumulation. This can be confirmed by the increased average phospholipid area with peroxidation levels. Indeed, most of the pores formed during the shock can heal. However, the permeation of water molecules across the healing membrane still increased. All these membrane-level information obtained from this study will be useful for improving the biomedical applications of shock waves.
Collapse
Affiliation(s)
- Tong Wei
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
7
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Wang XF, Tao G, Wen P, Ren BX, Pang CQ, Du CX. Damage to the DPPC Membrane Induced by Shock Waves: Molecular Dynamics Simulations. J Phys Chem B 2020; 124:9535-9545. [DOI: 10.1021/acs.jpcb.0c06077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-feng Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gang Tao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bao-xiang Ren
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chun-qiao Pang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chang-xing Du
- College of Zijin, Nanjing University of Science and Technology, Nanjing 210046, China
| |
Collapse
|
9
|
Min SH, Wijesinghe S, Lau EY, Berkowitz ML. Damage to Polystyrene Polymer Film by Shock Wave Induced Bubble Collapse. J Phys Chem B 2020; 124:7494-7499. [PMID: 32790408 DOI: 10.1021/acs.jpcb.0c04413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metallic surfaces that are in contact with solutions are commonly used in numerous applications where these surfaces can be damaged by shock wave induced bubble collapse. Use of polymer films that coat such surfaces to prevent them from damage requires a better understanding of how much harm collapsing bubbles produce in the films. In this study, we report the results from coarse-grained molecular dynamics simulations to study the damage to polystyrene (PS) films coating a hard surface. The damage was caused by a collapsing nanobubble located in the proximity of the film and interacting with an impinging shock wave. This collapse produces a high-speed water jet that impacts the PS film with a greater force than the shock front and creates cavities/pits in the PS film. We observed that polymer molecules located in the jet vicinity undergo conformational extension in the direction perpendicular to the jet motion, while chain molecules in the rest of the film undergo compression. We also observed that damage to the film is sensitive to the strength of the shock wave.
Collapse
Affiliation(s)
- Sa Hoon Min
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sidath Wijesinghe
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Max L Berkowitz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Effects of Bubble Size and Gas Density on the Shock-induced Collapse of Nanoscale Cavitation Bubble. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42493-020-00040-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Chowdhury SR, Lu HP. Probing Activated and Non-Activated Single Calmodulin Molecules under a Piconewton Compressive Force. Biochemistry 2018. [PMID: 29516736 DOI: 10.1021/acs.biochem.7b01283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interrogating the protein structure-function inter-relationship under a piconewton force manipulation has been highly promising and informative. Although protein conformational changes under pulling force manipulations have been extensively studied, protein conformational changes under a compressive force have not been explored in detail. Using our home-modified sensitive and high signal-to-noise atomic force microscopy (AFM) approach, we have applied a piconewton compressive force, manipulating a Calmodulin (CaM) molecule to characterize two different forms of CaM, the Ca2+-ligated activated form and the Ca2+ free non-activated form (apo-CaM). We observed sudden and spontaneous structural rupture of apo-CaM under compressive force applied by an AFM tip, though no such events were recorded in the case of Ca2+-ligated activated CaM form. The sudden spontaneous structural rupture under a piconewton force compression has never been reported before, which presents an unexplored function that is likely important for protein-protein interactions and cell signaling functions.
Collapse
Affiliation(s)
- S Roy Chowdhury
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| |
Collapse
|
12
|
Chowdhury SR, Cao J, He Y, Lu HP. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation. ACS NANO 2018; 12:2448-2454. [PMID: 29462552 DOI: 10.1021/acsnano.7b07934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.
Collapse
Affiliation(s)
- S Roy Chowdhury
- Department of Chemistry, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Jin Cao
- Department of Chemistry, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Yufan He
- Department of Chemistry, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - H Peter Lu
- Department of Chemistry, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| |
Collapse
|
13
|
Zhang L, Zhang Z, Jasa J, Li D, Cleveland RO, Negahban M, Jérusalem A. Molecular dynamics simulations of heterogeneous cell membranes in response to uniaxial membrane stretches at high loading rates. Sci Rep 2017; 7:8316. [PMID: 28814791 PMCID: PMC5559491 DOI: 10.1038/s41598-017-06827-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of the chosen representative membrane complexes under rapid mechanical loadings pertinent to therapeutic shock wave conditions. We find that their rupture characteristics do not exhibit significant sensitivity to the applied strain rates. Furthermore, we show that the embedded rigid inclusions markedly facilitate stretch-induced membrane disruptions while mechanically stiffening the associated complexes under the applied membrane stretches. Our results suggest that the presence of rigid molecules in cellular membranes could serve as “mechanical catalysts” to promote the mechanical destructions of the associated complexes, which, in concert with other biochemical/medical considerations, should provide beneficial information for future biomechanical-mediated therapeutics.
Collapse
Affiliation(s)
- Lili Zhang
- University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK.
| | - Zesheng Zhang
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - John Jasa
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - Dongli Li
- University of Oxford, Institute of Biomedical Engineering, Oxford, OX3 7DQ, UK
| | - Robin O Cleveland
- University of Oxford, Institute of Biomedical Engineering, Oxford, OX3 7DQ, UK
| | - Mehrdad Negahban
- University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE 68588, USA
| | - Antoine Jérusalem
- University of Oxford, Department of Engineering Science, Oxford, OX1 3PJ, UK.
| |
Collapse
|
14
|
Wu YT, Adnan A. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain. Sci Rep 2017; 7:5323. [PMID: 28706307 PMCID: PMC5509702 DOI: 10.1038/s41598-017-05790-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/23/2017] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuan-Ting Wu
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA
| | - Ashfaq Adnan
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA.
| |
Collapse
|
15
|
Chaplin V, Caskey CF. Multi-focal HIFU reduces cavitation in mild-hyperthermia. J Ther Ultrasound 2017; 5:12. [PMID: 28413682 PMCID: PMC5390440 DOI: 10.1186/s40349-017-0089-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background Mild-hyperthermia therapy (40–45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Methods Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Results Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5 W, and created heating that was more spatially diffuse than single focus, resulting in more voxels in the mild heating (3–8 °C) range. Conclusions Multi-focal HIFU can be used to achieve mild temperature elevation and reduce cavitation activity.
Collapse
Affiliation(s)
- Vandiver Chaplin
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232 USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232 USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232 USA
| |
Collapse
|
16
|
Adhikari U, Goliaei A, Berkowitz ML. Nanobubbles, cavitation, shock waves and traumatic brain injury. Phys Chem Chem Phys 2016; 18:32638-32652. [DOI: 10.1039/c6cp06704b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shock wave induced cavitation denaturates blood–brain barrier tight junction proteins; this may result in various neurological complications.
Collapse
Affiliation(s)
- Upendra Adhikari
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Ardeshir Goliaei
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Max L. Berkowitz
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|