1
|
Hawkins DEDP, Godwin OC, Antson AA. Viral Genomic DNA Packaging Machinery. Subcell Biochem 2024; 104:181-205. [PMID: 38963488 DOI: 10.1007/978-3-031-58843-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.
Collapse
Affiliation(s)
- Dorothy E D P Hawkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
| | - Owen C Godwin
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Structural Biology, The Francis Crick Institute, London, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK.
- Structural Biology, The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Real-Hohn A, Blaas D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021; 13:1784. [PMID: 34578365 PMCID: PMC8473194 DOI: 10.3390/v13091784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
3
|
The PLB measurement for the connector in Phi29 bacteriophage reveals the function of its channel loop. Biophys J 2021; 120:1650-1664. [PMID: 33684350 DOI: 10.1016/j.bpj.2021.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
The connector protein, also known as the portal protein, located at the portal vertex in the Phi29 bacteriophage has been found to play a key role in the genome DNA packaging motor. There is a disordered region, composed of 12 sets of 18-residue loops N229-N246, that has been assumed to serve as a "clamp" to retain the DNA within the pressurized capsid when DNA is fully packaged. However, the process remains undefined about how the clamping of DNA occurs and what signal is used to engage the channel loops to clamp the DNA near the end of DNA packaging. In this study, we use the planar lipid bilayer (PLB) membrane technique to study the connector with its loops cleaved. The channel properties are compared with those of the connector with corresponding wild-type loops at different membrane potentials. On the basis of the hypothesis of the Donnan effects in the flashing Brownian ratchet model, we associate the PLB experimental results with the outcomes from the relevant biochemical experiments on the proheads containing the connectors without the loops, which enables us to provide a clear picture about how the DNA clamping occurs. A mathematical relationship between the Donnan potential and the DNA packaging density is established, demonstrating that they are both in essence the same signal that is received and transmitted by the connector to dictate DNA clamping and the termination of DNA packaging. At the end of the study, the PLB technique is proposed as a viral research tool, and its potential use to study the functions of specific domains in a portal protein of the tailed bacteriophages is highlighted.
Collapse
|
4
|
Cai R, Price IR, Ding F, Wu F, Chen T, Zhang Y, Liu G, Jardine PJ, Lu C, Ke A. ATP/ADP modulates gp16-pRNA conformational change in the Phi29 DNA packaging motor. Nucleic Acids Res 2019; 47:9818-9828. [PMID: 31396619 PMCID: PMC6765105 DOI: 10.1093/nar/gkz692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/19/2022] Open
Abstract
Packaging of phage phi29 genome requires the ATPase gp16 and prohead RNA (pRNA). The highly conserved pRNA forms the interface between the connector complex and gp16. Understanding how pRNA interacts with gp16 under packaging conditions can shed light on the molecular mechanism of the packaging motor. Here, we present 3D models of the pRNA–gp16 complex and its conformation change in response to ATP or ADP binding. Using a combination of crystallography, small angle X-ray scattering and chemical probing, we find that the pRNA and gp16 forms a ‘Z’-shaped complex, with gp16 specifically binds to pRNA domain II. The whole complex closes in the presence of ATP, and pRNA domain II rotates open as ATP hydrolyzes, before resetting after ADP is released. Our results suggest that pRNA domain II actively participates in the packaging process.
Collapse
Affiliation(s)
- Rujie Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ian R Price
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Fang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Feifei Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ting Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yunlong Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Cuervo A, Fàbrega-Ferrer M, Machón C, Conesa JJ, Fernández FJ, Pérez-Luque R, Pérez-Ruiz M, Pous J, Vega MC, Carrascosa JL, Coll M. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nat Commun 2019; 10:3746. [PMID: 31431626 PMCID: PMC6702177 DOI: 10.1038/s41467-019-11705-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
Double-stranded DNA bacteriophages package their genome at high pressure inside a procapsid through the portal, an oligomeric ring protein located at a unique capsid vertex. Once the DNA has been packaged, the tail components assemble on the portal to render the mature infective virion. The tail tightly seals the ejection conduit until infection, when its interaction with the host membrane triggers the opening of the channel and the viral genome is delivered to the host cell. Using high-resolution cryo-electron microscopy and X-ray crystallography, here we describe various structures of the T7 bacteriophage portal and fiber-less tail complex, which suggest a possible mechanism for DNA retention and ejection: a portal closed conformation temporarily retains the genome before the tail is assembled, whereas an open portal is found in the tail. Moreover, a fold including a seven-bladed β-propeller domain is described for the nozzle tail protein.
Collapse
Affiliation(s)
- Ana Cuervo
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Montserrat Fàbrega-Ferrer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Cristina Machón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - José Javier Conesa
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Francisco J Fernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Abvance Biotech srl, Ave. Reina Victoria 32, 28003, Madrid, Spain
| | - Rosa Pérez-Luque
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Mar Pérez-Ruiz
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - M Cristina Vega
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
May the Road Rise to Meet You: DNA Deformation May Drive DNA Translocation. Biophys J 2019; 116:2060-2061. [PMID: 31079809 DOI: 10.1016/j.bpj.2019.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
|
7
|
Zhang CY, Zhang NH. Influence of Microscopic Interactions on the Flexible Mechanical Properties of Viral DNA. Biophys J 2018; 115:763-772. [PMID: 30119833 DOI: 10.1016/j.bpj.2018.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
During the packaging and ejection of viral DNA, its mechanical properties play an essential role in viral infection. Some of these mechanical properties originate from different microscopic interactions of the encapsulated DNA in the capsid. Based on an updated mesoscopic model of the interaction potential by Parsegian et al., an alternative continuum elastic model of the free energy of the confined DNA in the capsid is developed in this work. With this model, we not only quantitatively identify the respective contributions from hydration repulsion, electrostatic repulsion, entropy and elastic bending but also predict the ionic effect of viral DNA's mechanical properties during the packaging and ejection. The relevant predictions are quantitively or qualitatively consistent with the existing experimental results. Furthermore, the nonmonotonous or monotonous changes in the respective contributions of microscopic interactions to the ejection force and free energy at different ejection stages are revealed systematically. Among these, the nonmonotonicity in the entropic contribution implies a transition of viral DNA structure from order to disorder during the ejection.
Collapse
Affiliation(s)
- Cheng-Yin Zhang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China
| | - Neng-Hui Zhang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China; Department of Mechanics, College of Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
8
|
Kornfeind EM, Visalli RJ. Human herpesvirus portal proteins: Structure, function, and antiviral prospects. Rev Med Virol 2018; 28:e1972. [PMID: 29573302 DOI: 10.1002/rmv.1972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/28/2023]
Abstract
Herpesviruses (Herpesvirales) and tailed bacteriophages (Caudovirales) package their dsDNA genomes through an evolutionarily conserved mechanism. Much is known about the biochemistry and structural biology of phage portal proteins and the DNA encapsidation (viral genome cleavage and packaging) process. Although not at the same level of detail, studies on HSV-1, CMV, VZV, and HHV-8 have revealed important information on the function and structure of herpesvirus portal proteins. During dsDNA phage and herpesviral genome replication, concatamers of viral dsDNA are cleaved into single length units by a virus-encoded terminase and packaged into preformed procapsids through a channel located at a single capsid vertex (portal). Oligomeric portals are formed by the interaction of identical portal protein monomers. Comparing portal protein primary aa sequences between phage and herpesviruses reveals little to no sequence similarity. In contrast, the secondary and tertiary structures of known portals are remarkable. In all cases, function is highly conserved in that portals are essential for DNA packaging and also play a role in releasing viral genomic DNA during infection. Preclinical studies have described small molecules that target the HSV-1 and VZV portals and prevent viral replication by inhibiting encapsidation. This review summarizes what is known concerning the structure and function of herpesvirus portal proteins primarily based on their conserved bacteriophage counterparts and the potential to develop novel portal-specific DNA encapsidation inhibitors.
Collapse
Affiliation(s)
- Ellyn M Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|