1
|
Adler J, Bernhem K, Parmryd I. Membrane topography and the overestimation of protein clustering in single molecule localisation microscopy - identification and correction. Commun Biol 2024; 7:791. [PMID: 38951588 PMCID: PMC11217499 DOI: 10.1038/s42003-024-06472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Roy S, Vaippully R, Lokesh M, Nalupurackal G, Yadav V, Chakraborty S, Gopalakrishnan M, Rayappan George Edwin PE, Bajpai SK, Roy B. Comparison of thermal and athermal dynamics of the cell membrane slope fluctuations in the presence and absence of Latrunculin-B. Phys Biol 2023; 20:10.1088/1478-3975/accef1. [PMID: 37080214 PMCID: PMC7614533 DOI: 10.1088/1478-3975/accef1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/20/2023] [Indexed: 04/22/2023]
Abstract
Conventionally, only the normal cell membrane fluctuations have been studied and used to ascertain membrane properties like the bending rigidity. A new concept, the membrane local slope fluctuations was introduced recently (Vaippullyet al2020Soft Matter167606), which can be modelled as a gradient of the normal fluctuations. It has been found that the power spectral density (PSD) of slope fluctuations behave as (frequency)-1while the normal fluctuations yields (frequency)-5/3even on the apical cell membrane in the high frequency region. In this manuscript, we explore a different situation where the cell is applied with the drug Latrunculin-B which inhibits actin polymerization and find the effect on membrane fluctuations. We find that even as the normal fluctuations show a power law (frequency)-5/3as is the case for a free membrane, the slope fluctuations PSD remains (frequency)-1, with exactly the same coefficient as the case when the drug was not applied. Moreover, while sometimes, when the normal fluctuations at high frequency yield a power law of (frequency)-4/3, the pitch PSD still yields (frequency)-1. Thus, this presents a convenient opportunity to study membrane parameters like bending rigidity as a function of time after application of the drug, while the membrane softens. We also investigate the active athermal fluctuations of the membrane appearing in the PSD at low frequencies and find active timescales of slower than 1 s.
Collapse
Affiliation(s)
- Srestha Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Muruga Lokesh
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Gokul Nalupurackal
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Vandana Yadav
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | | | | | | | | | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Nawara TJ, Mattheyses AL. Imaging nanoscale axial dynamics at the basal plasma membrane. Int J Biochem Cell Biol 2023; 156:106349. [PMID: 36566777 PMCID: PMC10634635 DOI: 10.1016/j.biocel.2022.106349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Ibata N, Terentjev EM. Nucleation of cadherin clusters on cell-cell interfaces. Sci Rep 2022; 12:18485. [PMID: 36323859 PMCID: PMC9630535 DOI: 10.1038/s41598-022-23220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cadherins mediate cell-cell adhesion and help the cell determine its shape and function. Here we study collective cadherin organization and interactions within cell-cell contact areas, and find the cadherin density at which a 'gas-liquid' phase transition occurs, when cadherin monomers begin to aggregate into dense clusters. We use a 2D lattice model of a cell-cell contact area, and coarse-grain to the continuous number density of cadherin to map the model onto the Cahn-Hilliard coarsening theory. This predicts the density required for nucleation, the characteristic length scale of the process, and the number density of clusters. The analytical predictions of the model are in good agreement with experimental observations of cadherin clustering in epithelial tissues.
Collapse
Affiliation(s)
- Neil Ibata
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| | - Eugene M. Terentjev
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| |
Collapse
|
5
|
Thiele JC, Jungblut M, Helmerich DA, Tsukanov R, Chizhik A, Chizhik AI, Schnermann MJ, Sauer M, Nevskyi O, Enderlein J. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. SCIENCE ADVANCES 2022; 8:eabo2506. [PMID: 35675401 PMCID: PMC9176750 DOI: 10.1126/sciadv.abo2506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/25/2022] [Indexed: 05/25/2023]
Abstract
Over the past two decades, super-resolution microscopy has seen a tremendous development in speed and resolution, but for most of its methods, there exists a remarkable gap between lateral and axial resolution, which is by a factor of 2 to 3 worse. One recently developed method to close this gap is metal-induced energy transfer (MIET) imaging, which achieves an axial resolution down to nanometers. It exploits the distance-dependent quenching of fluorescence when a fluorescent molecule is brought close to a metal surface. In the present manuscript, we combine the extreme axial resolution of MIET imaging with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with direct stochastic optical reconstruction microscopy (dSTORM). This combination allows us to achieve isotropic three-dimensional super-resolution imaging of subcellular structures. Moreover, we used spectral demixing for implementing dual-color MIET-dSTORM that allows us to image and colocalize, in three dimensions, two different cellular structures simultaneously.
Collapse
Affiliation(s)
- Jan Christoph Thiele
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Marvin Jungblut
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dominic A. Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roman Tsukanov
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Anna Chizhik
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Alexey I. Chizhik
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Oleksii Nevskyi
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics–Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg August University, Göttingen, Germany
| |
Collapse
|
6
|
Brameshuber M, Klotzsch E, Ponjavic A, Sezgin E. Understanding immune signaling using advanced imaging techniques. Biochem Soc Trans 2022; 50:853-866. [PMID: 35343569 PMCID: PMC9162467 DOI: 10.1042/bst20210479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Advanced imaging is key for visualizing the spatiotemporal regulation of immune signaling which is a complex process involving multiple players tightly regulated in space and time. Imaging techniques vary in their spatial resolution, spanning from nanometers to micrometers, and in their temporal resolution, ranging from microseconds to hours. In this review, we summarize state-of-the-art imaging methodologies and provide recent examples on how they helped to unravel the mysteries of immune signaling. Finally, we discuss the limitations of current technologies and share our insights on how to overcome these limitations to visualize immune signaling with unprecedented fidelity.
Collapse
Affiliation(s)
- Mario Brameshuber
- Institute of Applied Physics – Biophysics, TU Wien, 1040 Vienna, Austria
| | - Enrico Klotzsch
- Humboldt-Universität zu Berlin, Institut für Biophysik, Experimentelle Biophysik Mechanobiologie, Sitz Invalidenstrasse 42, 10115 Berlin, Germany
| | - Aleks Ponjavic
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
7
|
Kim I, Leblanc J, Moreau P, Kyhm K, Dupont A, Wang I. Optical nanotopography of fluorescent surfaces by axial position modulation. OPTICS EXPRESS 2022; 30:6425-6439. [PMID: 35209581 DOI: 10.1364/oe.451896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
We present an optical method that combines confocal microscopy with position modulation to perform axial tracking and topographic imaging of fluorescent surfaces. Using a remote focusing system, the confocal observation volume is oscillated in the axial direction. The resulting modulation of the detected signal is used as a feedback to precisely control the distance to an object of interest. The accuracy of this method is theoretically analyzed and the axial-locking accuracy is experimentally evaluated. Topographic imaging is demonstrated on fluorescently coated beads and fixed cells. This microscope allows for nanometric topography or tracking of dynamic fluorescent surfaces.
Collapse
|
8
|
El Arawi D, Vézy C, Déturche R, Lehmann M, Kessler H, Dontenwill M, Jaffiol R. Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy. BIOPHYSICAL REPORTS 2021; 1:100021. [PMID: 36425460 PMCID: PMC9680782 DOI: 10.1016/j.bpr.2021.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.
Collapse
Affiliation(s)
- Dalia El Arawi
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Cyrille Vézy
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Régis Déturche
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Maxime Lehmann
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Horst Kessler
- Department Chemie, Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| |
Collapse
|
9
|
Optometry for a short-sighted microscope. Biophys J 2021; 120:4301-4304. [PMID: 34509502 DOI: 10.1016/j.bpj.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Evanescent-wave scattering is a topic in classical electrodynamics and in the study of colloidal particles near a boundary. However, how such near-surface scattering at subcellular refractive-index heterogeneities degrades the excitation confinement in biological total internal reflection fluorescence microscopy has not been well studied. An elegant theoretical work by Axelrod and Axelrod now addresses this very relevant question and reveals that-even when scattered-evanescent light preserves some of its surprising optical properties.
Collapse
|
10
|
Li Q, Hulleman CN, Moerland RJ, Mailvaganam E, Ganapathy S, Brinks D, Stallinga S, Rieger B. Waveguide-based total internal reflection fluorescence microscope enabling cellular imaging under cryogenic conditions. OPTICS EXPRESS 2021; 29:34097-34108. [PMID: 34809207 DOI: 10.1364/oe.433945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is an important imaging tool for the investigation of biological structures, especially the study on cellular events near the plasma membrane. Imaging at cryogenic temperatures not only enables observing structures in a near-native and fixed state but also suppresses irreversible photo-bleaching rates, resulting in increased photo-stability of fluorophores. Traditional TIRF microscopes produce an evanescent field based on high numerical aperture immersion objective lenses with high magnification, which results in a limited field of view and is incompatible with cryogenic conditions. Here, we present a waveguide-based TIRF microscope, which is able to generate a uniform evanescent field using high refractive index waveguides on photonic chips and to obtain cellular observation at cryogenic temperatures. Our method provides an inexpensive way to achieve total-internal-reflection fluorescence imaging under cryogenic conditions.
Collapse
|
11
|
Vu XH, Dien ND, Pham TTH, Jaffiol R, Vézy C, Ca NX, Trang TT. Evaluation of diffusion coefficient of P-glycoprotein molecules labeled with green fluorescent protein in living cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183721. [PMID: 34352241 DOI: 10.1016/j.bbamem.2021.183721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
The movement of individual molecules inside living cells has recently been resolved by single particles tracking (SPT) method which is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. Effective treatment of metastatic cancers requires the toxic chemotherapy, however this therapy leads to the multidrug resistance phenomenon of the cancer cells, in which the cancer cells resist simultaneously to different drugs with different targets and chemical structures. P-glycoprotein molecules which are responsible for multidrug resistance of many cancer cells have been studied by cancer biologists during past haft of century. Recently, advances in laser and detector technologies have enabled single fluorophores to be visualized in aqueous solution. The development of the total internal reflection fluorescent microscope (TIRFM) provided means to monitor dynamic molecular localization in living cells. In this paper, P-glycoproteins (PGP) were labeled with green fluorescent protein (GFP) in living cell membrane of Madin-Darby canine kidney (MDCK) and the TIRFM method was used to characterize the dynamics of individual protein molecules on the surface of living cells. An evanescent field was produced by a totally internally reflected and a laser beam was illuminated the glass-water interface. GFP-PGP proteins that entered the evanescent field appeared as individual spots of light which were slighter than background fluorescence. We obtained high-resolution images and diffusion maps of membrane proteins on cell surface and showed the local diffusion properties of specific proteins on single cells. We also determined the diffusion coefficient, the mean square displacement and the average velocity of the tracked particles, as well as the heterogeneity of the cell environment. This study enabled us to understand single-molecule features in living cell and measure the diffusion kinetics of membrane-bound molecules.
Collapse
Affiliation(s)
- Xuan Hoa Vu
- Institute of Science and Technology, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam
| | - Nguyen Dac Dien
- Faculty of Labour Protection, Vietnam Trade Union University, 169 Tay Son street, Hanoi city, Viet Nam
| | - Thi Thu Ha Pham
- Faculty of Chemistry, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam.
| | - Rodolphe Jaffiol
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, UMR CNRS 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, CS 42060, 10 004 Troyes Cedex, France.
| | - Cyrille Vézy
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, UMR CNRS 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, CS 42060, 10 004 Troyes Cedex, France
| | - Nguyen Xuan Ca
- Institute of Science and Technology, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU- University of Sciences (TNUS), Tan Thinh ward, Thai Nguyen city, Viet Nam
| |
Collapse
|
12
|
Liu Z, Jin L, Chen J, Fang Q, Ablameyko S, Yin Z, Xu Y. A survey on applications of deep learning in microscopy image analysis. Comput Biol Med 2021; 134:104523. [PMID: 34091383 DOI: 10.1016/j.compbiomed.2021.104523] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Advanced microscopy enables us to acquire quantities of time-lapse images to visualize the dynamic characteristics of tissues, cells or molecules. Microscopy images typically vary in signal-to-noise ratios and include a wealth of information which require multiple parameters and time-consuming iterative algorithms for processing. Precise analysis and statistical quantification are often needed for the understanding of the biological mechanisms underlying these dynamic image sequences, which has become a big challenge in the field. As deep learning technologies develop quickly, they have been applied in bioimage processing more and more frequently. Novel deep learning models based on convolution neural networks have been developed and illustrated to achieve inspiring outcomes. This review article introduces the applications of deep learning algorithms in microscopy image analysis, which include image classification, region segmentation, object tracking and super-resolution reconstruction. We also discuss the drawbacks of existing deep learning-based methods, especially on the challenges of training datasets acquisition and evaluation, and propose the potential solutions. Furthermore, the latest development of augmented intelligent microscopy that based on deep learning technology may lead to revolution in biomedical research.
Collapse
Affiliation(s)
- Zhichao Liu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China
| | - Luhong Jin
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China
| | - Jincheng Chen
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China
| | - Qiuyu Fang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Sergey Ablameyko
- National Academy of Sciences, United Institute of Informatics Problems, Belarusian State University, Minsk, 220012, Belarus
| | - Zhaozheng Yin
- AI Institute, Department of Biomedical Informatics and Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
14
|
Hwang W, Seo J, Kim D, Lee CJ, Choi IH, Yoo KH, Kim DY. Large field-of-view nanometer-sectioning microscopy by using metal-induced energy transfer and biexponential lifetime analysis. Commun Biol 2021; 4:91. [PMID: 33469155 PMCID: PMC7815909 DOI: 10.1038/s42003-020-01628-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy, which has about 100-nm axial excitation depth, is the method of choice for nanometer-sectioning imaging for decades. Lately, several new imaging techniques, such as variable angle TIRF microscopy, supercritical-angle fluorescence microscopy, and metal-induced energy transfer imaging, have been proposed to enhance the axial resolution of TIRF. However, all of these methods use high numerical aperture (NA) objectives, and measured images inevitably have small field-of-views (FOVs). Small-FOV can be a serious limitation when multiple cells need to be observed. We propose large-FOV nanometer-sectioning microscopy, which breaks the complementary relations between the depth of focus and axial sectioning by using MIET. Large-FOV imaging is achieved with a low-magnification objective, while nanometer-sectioning is realized utilizing metal-induced energy transfer and biexponential fluorescence lifetime analysis. The feasibility of our proposed method was demonstrated by imaging nanometer-scale distances between the basal membrane of human aortic endothelial cells and a substrate. Hwang et al. demonstrate that a high axial resolution can be achieved even with low numerical aperture (NA) objectives. They show the nano-profile of a basal cell membrane using metal-induced energy transfer and biexponential fluorescence lifetime analysis. The low-NA objective provides a larger field-of-view (FOV), thereby overcoming the limitations of a small FOV of the usually used high-NA objectives.
Collapse
Affiliation(s)
- Wonsang Hwang
- Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Jinwon Seo
- Department of Microbiology, Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - DongEun Kim
- Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Chang Jun Lee
- Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - In-Hong Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Dug Young Kim
- Department of Physics, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Xin Z, Zhang C, Sun L, Wan C, Chen T, Chen H, Wang M, Wang Y, Zhu S, Yuan X. High-performance imaging of cell-substrate contacts using refractive index quantification microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:7096-7108. [PMID: 33408982 PMCID: PMC7747918 DOI: 10.1364/boe.409764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Non-invasive imaging of living cells is an advanced technique that is widely used in the life sciences and medical research. We demonstrate a refractive index quantification microscopy (RIQM) that enables label-free studies of glioma cell-substrate contacts involving cell adhesion molecules and the extracellular matrix. This microscopy takes advantage of the smallest available spot created when an azimuthally polarized perfect optical vortex beam (POV) is tightly focused with a first-order spiral phase, which results in a relatively high imaging resolution among biosensors. A high refractive index (RI) resolution enables the RI distribution within neuronal cells to be monitored. The microscopy shows excellent capability for recognizing cellular structures and activities, demonstrating great potential in biological sensing and live-cell kinetic imaging.
Collapse
Affiliation(s)
- Ziqiang Xin
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chonglei Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Lixun Sun
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Wan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ting Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Houkai Chen
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Min Wang
- Photonics Center, Shenzhen University, Shenzhen, 518060, China
| | - Yijia Wang
- Institute of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Siwei Zhu
- Institute of Oncology, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
16
|
Gesper A, Wennmalm S, Hagemann P, Eriksson SG, Happel P, Parmryd I. Variations in Plasma Membrane Topography Can Explain Heterogenous Diffusion Coefficients Obtained by Fluorescence Correlation Spectroscopy. Front Cell Dev Biol 2020; 8:767. [PMID: 32903922 PMCID: PMC7443568 DOI: 10.3389/fcell.2020.00767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 01/18/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is frequently used to study diffusion in cell membranes, primarily the plasma membrane. The diffusion coefficients reported in the plasma membrane of the same cell type and even within single cells typically display a large spread. We have investigated whether this spread can be explained by variations in membrane topography throughout the cell surface, that changes the amount of membrane in the FCS focal volume at different locations. Using FCS, we found that diffusion of the membrane dye DiI in the apical plasma membrane was consistently faster above the nucleus than above the cytoplasm. Using live cell scanning ion conductance microscopy (SICM) to obtain a topography map of the cell surface, we demonstrate that cell surface roughness is unevenly distributed with the plasma membrane above the nucleus being the smoothest, suggesting that the difference in diffusion observed in FCS is related to membrane topography. FCS modeled on simulated diffusion in cell surfaces obtained by SICM was consistent with the FCS data from live cells and demonstrated that topography variations can cause the appearance of anomalous diffusion in FCS measurements. Furthermore, we found that variations in the amount of the membrane marker DiD, a proxy for the membrane, but not the transmembrane protein TCRζ or the lipid-anchored protein Lck, in the FCS focal volume were related to variations in diffusion times at different positions in the plasma membrane. This relationship was seen at different positions both at the apical cell and basal cell sides. We conclude that it is crucial to consider variations in topography in the interpretation of FCS results from membranes.
Collapse
Affiliation(s)
| | - Stefan Wennmalm
- SciLifeLab, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | - Ingela Parmryd
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Oheim M, Salomon A, Brunstein M. Supercritical Angle Fluorescence Microscopy and Spectroscopy. Biophys J 2020; 118:2339-2348. [PMID: 32348720 PMCID: PMC7231923 DOI: 10.1016/j.bpj.2020.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023] Open
Abstract
Fluorescence detection, either involving propagating or near-field emission, is widely being used in spectroscopy, sensing, and microscopy. Total internal reflection fluorescence (TIRF) confines fluorescence excitation by an evanescent (near) field, and it is a popular contrast generator for surface-selective fluorescence assays. Its emission equivalent, supercritical angle fluorescence (SAF), is comparably less established, although it achieves a similar optical sectioning as TIRF does. SAF emerges when a fluorescing molecule is located very close to an interface and its near-field emission couples to the higher refractive index medium (n2 >n1) and becomes propagative. Then, most fluorescence is detectable on the side of the higher-index substrate, and a large fraction of this fluorescence is emitted into angles forbidden by Snell's law. SAF, as well as the undercritical angle fluorescence (UAF; far-field emission) components, can be collected with microscope objectives having a high-enough detection aperture (numerical aperture >n2) and be separated in the back focal plane by Fourier filtering. The back focal plane image encodes information about the fluorophore radiation pattern, and it can be analyzed to yield precise information about the refractive index in which the emitters are embedded, their nanometric distance from the interface, and their orientation. A SAF microscope can retrieve this near-field information through wide-field optics in a spatially resolved manner, and this functionality can be added to an existing inverted microscope. Here, we describe the potential underpinning of SAF microscopy and spectroscopy, particularly in comparison with TIRF. We review the challenges and opportunities that SAF presents from a biophysical perspective, and we discuss areas in which we see potential.
Collapse
Affiliation(s)
- Martin Oheim
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, Paris, France.
| | - Adi Salomon
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, Paris, France; Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Maia Brunstein
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, Paris, France; Chaire d'Excellence Junior, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
18
|
Liu W, Kuang C, Yuan Y, Zhang Z, Chen Y, Han Y, Xu L, Zhang M, Zhang YH, Xu Y, Liu X. Simultaneous Two-Angle Axial Ratiometry for Fast Live and Long-Term Three-Dimensional Super-Resolution Fluorescence Imaging. J Phys Chem Lett 2019; 10:7811-7816. [PMID: 31804831 DOI: 10.1021/acs.jpclett.9b03093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The application of optical microscopy in four-dimensional (spatial and temporal) super-resolution imaging poses challenges because of the requirement of a long acquisition time or high illumination intensity. In this paper, we introduce simultaneous two-angle axial ratiometry (STARII) for <20 nm axial super-resolution imaging and for fast and long-term imaging of live cells up to hundreds of frames per second. This method involves recording two raw images in two incident angle channels in the context of evanescent wave illumination and obtaining the corresponding intensity ratio. Furthermore, we demonstrate the combination of STARII with the lateral super-resolution method to resolve three-dimensional nanoscale structures of microtubules and to visualize the long-term dynamical plasma membrane curvature and fast remodeling of endoplasmic reticulum tubule meshwork and three-way junctions. These demonstrations indicate an important potential application of STARII in investigating nanoscale cellular complex processes in the native state.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
- Ningbo Research Institute , Zhejiang University , Ningbo , Zhejiang 315100 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yifan Yuan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Zhimin Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Youhua Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data , North University of China , Taiyuan , Shanxi 030051 , China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Liang Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Yingke Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
- Ningbo Research Institute , Zhejiang University , Ningbo , Zhejiang 315100 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
19
|
Satake H, Sakata T. Estimation of Extracellular Matrix Production Using a Cultured-Chondrocyte-Based Gate Ion-Sensitive Field-Effect Transistor. Anal Chem 2019; 91:16017-16022. [DOI: 10.1021/acs.analchem.9b04789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroto Satake
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
20
|
Satake H, Sakata T. Interfacial pH Behavior at a Cell/Gate Insulator Nanogap Induced by Allergic Responses. ACS OMEGA 2019; 4:14255-14260. [PMID: 31508549 PMCID: PMC6733167 DOI: 10.1021/acsomega.9b01872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we clarify the interfacial pH behavior induced by allergic responses at a mast cell/gate insulator nanogap detected by laser scanning confocal fluorescence microscopy. In a previous work, the change in interfacial pH detected on the basis of allergic responses was monitored at a mast cell/gate insulator nanogap interface using a cell-cultured gate ion-sensitive field-effect transistor (ISFET), but the interfacial pH behavior at a mast cell/gate insulator nanogap has not been clarified using other methods. Here, the phospholipid fluorescein is employed as the extracellular pH indicator, which is fixed to the external side of the plasma membrane of mast cells cultured on a substrate. As a result, the interfacial pH at the mast cell/substrate nanogap increases after mast cells with IgE on their membrane are activated by the interaction between IgE and an allergen. This is due to the basicity of histamine molecules released from mast cells. Moreover, the change in the interfacial pH at the mast cell/substrate nanogap is larger than that at the mast cell/bulk solution interface. That is, molecules of substances secreted as a result of allergic responses are assumed to accumulate around the cell/substrate nanogap. The data obtained in this study support the idea that potentiometric ion sensors such as ISFETs can detect a cellular-function-induced change in pH at a cell/electrode nanogap in real time.
Collapse
|
21
|
Figueiras E, Silvestre OF, Ihalainen TO, Nieder JB. Phasor-assisted nanoscopy reveals differences in the spatial organization of major nuclear lamina proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118530. [PMID: 31415840 DOI: 10.1016/j.bbamcr.2019.118530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 11/15/2022]
Abstract
Phasor-assisted Metal Induced Energy Transfer-Fluorescence Lifetime Imaging Microscopy (MIET-FLIM) nanoscopy is introduced as a powerful tool for functional cell biology research. Thin metal substrates can be used to obtain axial super-resolution via nanoscale distance-dependent MIET from fluorescent dyes towards a nearby metal layer, thereby creating fluorescence lifetime contrast between dyes located at different nanoscale distance from the metal. Such data can be used to achieve axially super-resolved microscopy images, a process known as MIET-FLIM nanoscopy. Suitability of the phasor approach in MIET-FLIM nanoscopy is first demonstrated using nanopatterned substrates, and furthermore applied to characterize the distance distribution of the epithelial basal membrane of a biological cell from the gold substrate. The phasor plot of an entire cell can be used to characterize the full Förster resonance energy transfer (FRET) trajectory as a large distance heterogeneity within the sensing range of about 100 nm from the metal surface is present due to the extended shape of cell with curvatures. In contrast, the different proteins of nuclear lamina show strong confinement close to the nuclear envelope in nanoscale. We find the lamin B layer resides in average at shorter distances from the gold surface compared to the lamin A/C layer located in more extended ranges. This and the observed heterogeneity of the protein layer thicknesses suggests that A- and B-type lamins form distinct networks in the nuclear lamina. Our results provide detailed insights for the study of the different roles of lamin proteins in chromatin tethering and nuclear mechanics.
Collapse
Affiliation(s)
- Edite Figueiras
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Oscar F Silvestre
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, 33014 Tampere, Finland
| | - Jana B Nieder
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| |
Collapse
|
22
|
Oheim M, Salomon A, Weissman A, Brunstein M, Becherer U. Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy. Biophys J 2019; 117:795-809. [PMID: 31439287 DOI: 10.1016/j.bpj.2019.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
Roughly half of a cell's proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors, and exchanges cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against concentration gradients. Receptors, ion channels, pumps, and transporters are the molecular substrates of these biological processes, and they constitute important targets for drug discovery. Total internal reflection fluorescence (TIRF) microscopy suppresses the background from the cell's deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live cells. The optical sectioning of TIRF is based on the excitation confinement of the evanescent wave generated at the glass/cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of TIRF data problematic. Nevertheless, many applications like superresolution microscopy, colocalization, Förster resonance energy transfer, near-membrane fluorescence recovery after photobleaching, uncaging or photoactivation/switching as well as single-particle tracking require the quantitative interpretation of evanescent-wave-excited images. Here, we review existing techniques for characterizing evanescent fields, and we provide a roadmap for comparing TIRF data across images, experiments, and laboratories.
Collapse
Affiliation(s)
- Martin Oheim
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France.
| | - Adi Salomon
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Adam Weissman
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel
| | - Maia Brunstein
- Université de Paris, CNRS, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Paris, France; Chaire d'Excellence Junior, Université Sorbonne Paris Cité, Paris, France
| | - Ute Becherer
- Saarland University, Department of Physiology, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
23
|
Sakata T. Biologically Coupled Gate Field-Effect Transistors Meet in Vitro Diagnostics. ACS OMEGA 2019; 4:11852-11862. [PMID: 31460295 PMCID: PMC6682067 DOI: 10.1021/acsomega.9b01629] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 05/22/2023]
Abstract
In this paper, recent works on biologically coupled gate field-effect transistor (bio-FET) sensors are introduced and compared to provide a perspective. Most biological phenomena are closely related to behaviors of ions and biomolecules. This is why biosensing devices for detecting ionic and biomolecular charges contribute to the direct analysis of biological phenomena in a label-free and enzyme-free manner. Potentiometric biosensors such as bio-FET sensors, which allow the direct detection of these charges on the basis of the field effect, meet this requirement and have been developed as simple devices for in vitro diagnostics (IVD). A variety of biological ionic behaviors generated by biomolecular recognition events and cellular activities are being targeted for clinical diagnostics as well as the study of neuroscience using the bio-FET sensors. To realize these applications, bioelectrical interfaces should be formed between the electrolyte solution and the gate electrode by modifying artificially synthesized and biomimetic membranes, resulting in the selective detection of targets based on intrinsic molecular charges. Various types of semiconducting materials, not only inorganic semiconductors but also organic semiconductors, can be selected for use in bio-FET sensors, depending on the application field. In addition, a semiconductor integrated circuit device is ideal for the massively parallel detection of multiple samples. Thus, platforms based on bio-FET sensors are suitable for use in simple and miniaturized electrical circuit systems for IVD to enable the prevention and early detection of diseases.
Collapse
|
24
|
El Arawi D, Cardoso Dos Santos M, Vézy C, Jaffiol R. Incidence angle calibration for prismless total internal reflection fluorescence microscopy. OPTICS LETTERS 2019; 44:1710-1713. [PMID: 30933128 DOI: 10.1364/ol.44.001710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
We propose a calibration routine useful to evaluate the incident angle in total internal reflection fluorescence (TIRF) microscopy. This procedure is based on critical angle measurements conducted in the back focal plane (BFP) of the objective. Such BFP imaging can be easily implemented on any TIRF setup, making this technique very attractive. Calibration exactitude was demonstrated by comparing the theoretical angular dependence of the electric field intensity |E|2 at glass/water interface to experimental observations.
Collapse
|
25
|
Soubies E, Radwanska A, Grall D, Blanc-Féraud L, Van Obberghen-Schilling E, Schaub S. Nanometric axial resolution of fibronectin assembly units achieved with an efficient reconstruction approach for multi-angle-TIRF microscopy. Sci Rep 2019; 9:1926. [PMID: 30760745 PMCID: PMC6374485 DOI: 10.1038/s41598-018-36119-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
High resolution imaging of molecules at the cell-substrate interface is required for understanding key biological processes. Here we propose a complete pipeline for multi-angle total internal reflection fluorescence microscopy (MA-TIRF) going from instrument design and calibration procedures to numerical reconstruction. Our custom setup is endowed with a homogeneous field illumination and precise excitation beam angle. Given a set of MA-TIRF acquisitions, we deploy an efficient joint deconvolution/reconstruction algorithm based on a variational formulation of the inverse problem. This algorithm offers the possibility of using various regularizations and can run on graphics processing unit (GPU) for rapid reconstruction. Moreover, it can be easily used with other MA-TIRF devices and we provide it as an open-source software. This ensemble has enabled us to visualize and measure with unprecedented nanometric resolution, the depth of molecular components of the fibronectin assembly machinery at the basal surface of endothelial cells.
Collapse
Affiliation(s)
- Emmanuel Soubies
- Université Côte d'Azur, CNRS, Inria, I3S, France. .,Biomedical Imaging Group, EPFL, Lausanne, Switzerland.
| | | | | | | | | | - Sébastien Schaub
- Université Côte d'Azur, CNRS, Inria, I3S, France. .,Université Côte d'Azur, CNRS, Inserm, iBV, France.
| |
Collapse
|
26
|
Chen Y, Liu W, Zhang Z, Zheng C, Huang Y, Cao R, Zhu D, Xu L, Zhang M, Zhang YH, Fan J, Jin L, Xu Y, Kuang C, Liu X. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy. Nat Commun 2018; 9:4818. [PMID: 30446673 PMCID: PMC6240104 DOI: 10.1038/s41467-018-07244-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Imaging and tracking of near-surface three-dimensional volumetric nanoscale dynamic processes of live cells remains a challenging problem. In this paper, we propose a multi-color live-cell near-surface-volume super-resolution microscopy method that combines total internal reflection fluorescence structured illumination microscopy with multi-angle evanescent light illumination. We demonstrate that our approach of multi-angle interference microscopy is perfectly adapted to studying subcellular dynamics of mitochondria and microtubule architectures during cell migration. 3D super-resolution imaging of dynamic processes in live cells is still challenging, especially in a large field of view. Here the authors combine SIM with multi-angle evanescent light illumination and achieve improved lateral and axial resolution, with stack acquisition time in the range of 1–2 s.
Collapse
Affiliation(s)
- Youhua Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, Shanxi, 030051, China
| | - Wenjie Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhimin Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Cheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yujia Huang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruizhi Cao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dazhao Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiannan Fan
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Luhong Jin
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingke Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
27
|
Dejardin MJ, Hemmerle A, Sadoun A, Hamon Y, Puech PH, Sengupta K, Limozin L. Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). NANO LETTERS 2018; 18:6544-6550. [PMID: 30179011 DOI: 10.1021/acs.nanolett.8b03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.
Collapse
Affiliation(s)
| | | | - Anaïs Sadoun
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| | - Yannick Hamon
- Aix Marseille Univ , CNRS, INSERM, CIML , Marseille 13288 , France
| | | | - Kheya Sengupta
- Aix Marseille Univ , CNRS, CINAM , Marseille 13288 , France
| | - Laurent Limozin
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| |
Collapse
|
28
|
Sakata T, Sugimoto H, Saito A. Live Monitoring of Microenvironmental pH Based on Extracellular Acidosis around Cancer Cells with Cell-Coupled Gate Ion-Sensitive Field-Effect Transistor. Anal Chem 2018; 90:12731-12736. [DOI: 10.1021/acs.analchem.8b03070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Haruyo Sugimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akiko Saito
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Niederauer C, Blumhardt P, Mücksch J, Heymann M, Lambacher A, Schwille P. Direct characterization of the evanescent field in objective-type total internal reflection fluorescence microscopy. OPTICS EXPRESS 2018; 26:20492-20506. [PMID: 30119359 DOI: 10.1364/oe.26.020492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/08/2018] [Indexed: 05/22/2023]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is a commonly used method for studying fluorescently labeled molecules in close proximity to a surface. Usually, the TIRF axial excitation profile is assumed to be single-exponential with a characteristic penetration depth, governed by the incident angle of the excitation laser beam towards the optical axis. However, in practice, the excitation profile does not only comprise the theoretically predicted single-exponential evanescent field, but also an additional non-evanescent contribution, supposedly caused by scattering within the optical path or optical aberrations. We developed a calibration slide to directly characterize the TIRF excitation field. Our slide features ten height steps ranging from 25 to 550 nanometers, fabricated from a polymer with a refractive index matching that of water. Fluorophores in aqueous solution above the polymer step layers sample the excitation profile at different heights. The obtained excitation profiles confirm the theoretically predicted exponential decay over increasing step heights as well as the presence of a non-evanescent contribution.
Collapse
|
30
|
Chen Y, Cao R, Liu W, Zhu D, Zhang Z, Kuang C, Liu X. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29693956 DOI: 10.1117/1.jbo.23.4.046007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 05/15/2023]
Abstract
We present an alternative approach to realize structured illumination microscopy (SIM), which is capable for live cell imaging. The prototype utilizes two sets of scanning galvo mirrors, a polarization converter and a piezo-platform to generate a fast shifted, s-polarization interfered and periodic variable illumination patterns. By changing the angle of the scanning galvanometer, we can change the position of the spots at the pupil plane of the objective lens arbitrarily, making it easy to switch between widefield and total internal reflection fluorescent-SIM mode and adapting the penetration depth in the sample. Also, a twofold resolution improvement is achieved in our experiments. The prototype offers more flexibility of pattern period and illumination orientation changing than previous systems.
Collapse
Affiliation(s)
- Youhua Chen
- Zhejiang Univ., China
- North Univ. of China, China
| | | | | | | | | | | | - Xu Liu
- Zhejiang Univ., China
- Shanxi Univ., China
| |
Collapse
|
31
|
Chizhik AM, Wollnik C, Ruhlandt D, Karedla N, Chizhik AI, Hauke L, Hähnel D, Gregor I, Enderlein J, Rehfeldt F. Dual-color metal-induced and Förster resonance energy transfer for cell nanoscopy. Mol Biol Cell 2018; 29:846-851. [PMID: 29444956 PMCID: PMC5905297 DOI: 10.1091/mbc.e17-05-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report a novel method, dual-color axial nanometric localization by metal--induced energy transfer, and combine it with Förster resonance energy transfer (FRET) for resolving structural details in cells on the molecular level. We demonstrate the capability of this method on cytoskeletal elements and adhesions in human mesenchymal stem cells. Our approach is based on fluorescence-lifetime-imaging microscopy and allows for precise determination of the three-dimensional architecture of stress fibers anchoring at focal adhesions, thus yielding crucial information to understand cell-matrix mechanics. In addition to resolving nanometric structural details along the z-axis, we use FRET to gain precise information on the distance between actin and vinculin at focal adhesions.
Collapse
Affiliation(s)
- Anna M Chizhik
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Carina Wollnik
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Daja Ruhlandt
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Narain Karedla
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37077 Göttingen, Germany
| | - Alexey I Chizhik
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Lara Hauke
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Dirk Hähnel
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Ingo Gregor
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37077 Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Biswas A, Alex A, Sinha B. Mapping Cell Membrane Fluctuations Reveals Their Active Regulation and Transient Heterogeneities. Biophys J 2017; 113:1768-1781. [PMID: 29045871 PMCID: PMC5647594 DOI: 10.1016/j.bpj.2017.08.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023] Open
Abstract
Shape fluctuations of the plasma membrane occur in all cells, are incessant, and are proposed to affect membrane functioning. Although studies show how membrane fluctuations are affected by cellular activity in adherent cells, their spatial regulation and the corresponding change in membrane mechanics remain unclear. In this article, we study how ATP-driven activities and actomyosin cytoskeleton impact basal membrane fluctuations in adherent cells. Using interference imaging, we map height fluctuations within single cells and compare the temporal spectra with existing theoretical models to gain insights about the underlying membrane mechanics. We find that ATP-dependent activities enhance the nanoscale z fluctuations but stretch out the membrane laterally. Although actin polymerization or myosin-II activity individually enhances fluctuations, the cortex in unperturbed cells stretches out the membrane and dampens fluctuations. Fitting with models suggest this dampening to be due to confinement by the cortex. However, reduced fluctuations on mitosis or on ATP-depletion/stabilization of cortex correlate with increased tension. Both maps of fluctuations and local temporal autocorrelation functions reveal ATP-dependent transient short-range (<2 μm) heterogeneities. Together, our results show how various ATP-driven processes differently affect membrane mechanics and hence fluctuations, while creating distinct local environments whose functional role needs future investigation.
Collapse
Affiliation(s)
- Arikta Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India
| | - Amal Alex
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
33
|
Near-Membrane Refractometry Using Supercritical Angle Fluorescence. Biophys J 2017; 112:1940-1948. [PMID: 28494964 DOI: 10.1016/j.bpj.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy and its variants are key technologies for visualizing the dynamics of single molecules or organelles in live cells. Yet truly quantitative TIRF remains problematic. One unknown hampering the interpretation of evanescent-wave excited fluorescence intensities is the undetermined cell refractive index (RI). Here, we use a combination of TIRF excitation and supercritical angle fluorescence emission detection to directly measure the average RI in the "footprint" region of the cell during image acquisition. Our RI measurement is based on the determination on a back-focal plane image of the critical angle separating evanescent and far-field fluorescence emission components. We validate our method by imaging mouse embryonic fibroblasts and BON cells. By targeting various dyes and fluorescent-protein chimeras to vesicles, the plasma membrane, as well as mitochondria and the endoplasmic reticulum, we demonstrate local RI measurements with subcellular resolution on a standard TIRF microscope, with a removable Bertrand lens as the only modification. Our technique has important applications for imaging axial vesicle dynamics and the mitochondrial energy state or detecting metabolically more active cancer cells.
Collapse
|
34
|
Cardoso Dos Santos M, Vézy C, Morjani H, Jaffol R. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.3.438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Yip C. Angling for A Better View. Biophys J 2016; 111:1141-1142. [DOI: 10.1016/j.bpj.2016.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/27/2022] Open
|