1
|
Luo Q, Zeng Q, Wang C, Zhang C, Yu H, Yang Y, Guan X. Ultrasensitive Single-Molecule Biosensor by Periodic Modulation of Magnetic Particle Motion. NANO LETTERS 2024; 24:13998-14003. [PMID: 39441689 DOI: 10.1021/acs.nanolett.4c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ultrasensitive detection of low-abundance biomarkers by modern single-molecule technologies is critical for better diagnosis of severe diseases, but inevitable nonspecific bindings often cause fluctuations in the single-molecule counting results. Here we present an approach to improve the specificity in a single-molecule immunoassay by translating molecular binding signals into periodic nanomotion of magnetic particles. The sandwiched immunoassay is modified by using a long linker to tether one antibody onto a gold-covered substrate and a magnetic particle with another antibody coated as the reporter. By actively oscillating the particles with alternating magnetic fields, we could reliably identify specific binding through intensity fluctuation in plasmonic images of single particles. As a proof of concept, we demonstrate the detection of IFN-γ at the femtomolar level by the digital counting of specifically bound molecules. This active strategy outperforms existing passive motion-based approaches in sensitivity and speed, paving the way for disease diagnosis with low-abundance biomarkers.
Collapse
Affiliation(s)
- Qingqing Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiang Zeng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cheng Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xinping Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
2
|
Pekar K, Young RT, Sensale S. Optimizing Binding among Bimolecular Tethered Complexes. J Phys Chem B 2024; 128:5506-5512. [PMID: 38786364 DOI: 10.1021/acs.jpcb.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tethered motion is ubiquitous in nature, offering controlled movement and spatial constraints to otherwise chaotic systems. The enhanced functionality and practical utility of tethers has been exploited in biotechnology, catalyzing the design of novel biosensors and molecular assembly techniques. While notable technological advances incorporating tethered motifs have been made, a theoretical gap persists within the paradigm, hindering a comprehensive understanding of tethered-based technologies. In this work, we focus on the characterization of the binding kinetics of two tethered molecules functionalized to a hard surface. Using a mean-field approximation, the binding time of such bimolecular system is determined analytically. Furthermore, estimates of the grafting site separation and polymer lengths which expedite binding are provided. These estimates, along with the analytical theories and frameworks established here, have the potential to improve efficacy in self-assembly methods in DNA nanotechnology and can be extended to more biologically specific endeavors including targeted drug-delivery and molecular sensing.
Collapse
Affiliation(s)
- Kyle Pekar
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115-2214, United States
| |
Collapse
|
3
|
Yin B, Ho WKH, Zhang Q, Li C, Huang Y, Yan J, Yang H, Hao J, Wong SHD, Yang M. Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4714-4724. [PMID: 35081679 DOI: 10.1021/acsami.1c21173] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Hongrong Yang
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Wang Y, Jiang B, Wang Y, Wei W, Niu B, Chen H, Wang H. Imaging the Heterogeneous Localization of a Single Molecule. Anal Chem 2021; 93:12464-12471. [PMID: 34459585 DOI: 10.1021/acs.analchem.1c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule localization allows determining the underlying biological and biochemical processes and promotes the development of super-resolution imaging techniques. Here, we present an optical technique of tracking the motion of a single nanoparticle linked to a substrate via a biomolecule tether to reveal the localization of single biomolecules and the transient states of single nanoparticle switching between specific binding pairs. The affinities, steric hindrance, and conformational variation of a single-molecule binding pair uncover the dynamic details and intrinsic mechanism of binding processes with high specificity and accuracy (a few nanometers). The application of tracking motions of single soft liposomes on different modified surfaces was further demonstrated, which revealed the characteristic behavior related to surface chemistry. Our results show that the trajectory of nanoscale liposomes loaded with small-drug molecules is linked to the compositional inhomogeneity, which provides a route for thorough comprehension of the fundamental biotechnological process.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Wang
- Biodesign Center for Bioelectronics and Biosensors, and School of Electrical, Energy, and Computer Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongyuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods 2019; 169:57-68. [PMID: 31302177 DOI: 10.1016/j.ymeth.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical tools and models are reviewed in this paper.
Collapse
|
6
|
Probing Mitotic CENP-E Kinesin with the Tethered Cargo Motion Assay and Laser Tweezers. Biophys J 2019; 114:2640-2652. [PMID: 29874614 DOI: 10.1016/j.bpj.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
Coiled-coil stalks of various kinesins differ significantly in predicted length and structure; this is an adaption that helps these motors carry out their specialized functions. However, little is known about the dynamic stalk configuration in moving motors. To gain insight into the conformational properties of the transporting motors, we developed a theoretical model to predict Brownian motion of a microbead tethered to the tail of a single, freely walking molecule. This approach, which we call the tethered cargo motion (TCM) assay, provides an accurate measure of the mechanical properties of motor-cargo tethering, verified using kinesin-1 conjugated to a microbead via DNA links in vitro. Applying the TCM assay to the mitotic kinesin CENP-E unexpectedly revealed that when walking along a microtubule track, this highly elongated molecule with a contour length of 230 nm formed a 20-nm-long tether. The stalk of a walking CENP-E could not be extended fully by application of sideways force with optical tweezers (up to 4 pN), implying that CENP-E carries its cargo in a compact configuration. Assisting force applied along the microtubule track accelerates CENP-E walking, but this increase does not depend on the presence of the CENP-E stalk. Our results suggest that the unusually large stalk of CENP-E has little role in regulating its function as a transporter. The adjustable stalk configuration may represent a regulatory mechanism for controlling the physical reach between kinetochore-bound CENP-E and spindle microtubules, or it may assist localizing various kinetochore regulators in the immediate vicinity of the kinetochore-embedded microtubule ends. The TCM assay and underlying theoretical framework will provide a general guide for determining the dynamic configurations of various molecular motors moving along their tracks, freely or under force.
Collapse
|
7
|
Visser EWA, Yan J, van IJzendoorn LJ, Prins MWJ. Continuous biomarker monitoring by particle mobility sensing with single molecule resolution. Nat Commun 2018; 9:2541. [PMID: 29959314 PMCID: PMC6026194 DOI: 10.1038/s41467-018-04802-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Healthcare is in demand of technologies for real-time sensing in order to continuously guard the state of patients. Here we present biomarker-monitoring based on the sensing of particle mobility, a concept wherein particles are coupled to a substrate via a flexible molecular tether, with both the particles and substrate provided with affinity molecules for effectuating specific and reversible interactions. Single-molecular binding and unbinding events modulate the Brownian particle motion and the state changes are recorded using optical scattering microscopy. The technology is demonstrated with DNA and protein as model biomarkers, in buffer and in blood plasma, showing sensitivity to picomolar and nanomolar concentrations. The sensing principle is direct and self-contained, without consuming or producing any reactants. With its basis in reversible interactions and single-molecule resolution, we envisage that the presented technology will enable biosensors for continuous biomarker monitoring with high sensitivity, specificity, and accuracy.
Collapse
Affiliation(s)
- Emiel W A Visser
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Junhong Yan
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Leo J van IJzendoorn
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Menno W J Prins
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands.
| |
Collapse
|