1
|
Loirette-Pelous A, Greffet JJ. Theory of Photoluminescence by Metallic Structures. ACS NANO 2024; 18:31823-31833. [PMID: 39523550 DOI: 10.1021/acsnano.4c07637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Light emission by metals at room temperature is quenched by fast relaxation processes. Nevertheless, Mooradian reported in 1969 the observation of photoluminescence by metals pumped by a laser. While this phenomenon is currently at the heart of many promising applications, it is still poorly understood. In this work, we report a theory which reproduces quantitatively previously published experimental data of photoluminescence by metallic nanoparticles. We first provide a general formula that relates the emitted power for a frequency, direction and polarization state to a sum over all transitions involving matrix elements, electronic distribution of all bands and Green's tensors. We then consider the case of intraband recombination and derive a closed-form expression of the emitted power depending only on macroscopic quantities. This formula, which is a generalization of Kirchhoff's law, answers many of the open questions related to intraband photoluminescence.
Collapse
Affiliation(s)
- Aurelian Loirette-Pelous
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Jean-Jacques Greffet
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| |
Collapse
|
2
|
Cai YY, Tauzin LJ, Ostovar B, Lee S, Link S. Light emission from plasmonic nanostructures. J Chem Phys 2021; 155:060901. [PMID: 34391373 DOI: 10.1063/5.0053320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of light emission from metallic nanoparticles has been a subject of debate in recent years. Photoluminescence and electronic Raman scattering mechanisms have both been proposed to explain the observed emission from plasmonic nanostructures. Recent results from Stokes and anti-Stokes emission spectroscopy of single gold nanorods using continuous wave laser excitation carried out in our laboratory are summarized here. We show that varying excitation wavelength and power change the energy distribution of hot carriers and impact the emission spectral lineshape. We then examine the role of interband and intraband transitions in the emission lineshape by varying the particle size. We establish a relationship between the single particle emission quantum yield and its corresponding plasmonic resonance quality factor, which we also tune through nanorod crystallinity. Finally, based on anti-Stokes emission, we extract electron temperatures that further suggest a hot carrier based mechanism. The central role of hot carriers in our systematic study on gold nanorods as a model system supports a Purcell effect enhanced hot carrier photoluminescence mechanism. We end with a discussion on the impact of understanding the light emission mechanism on fields utilizing hot carrier distributions, such as photocatalysis and nanothermometry.
Collapse
Affiliation(s)
- Yi-Yu Cai
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lawrence J Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Behnaz Ostovar
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephen Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
3
|
Deska R, Obstarczyk P, Matczyszyn K, Olesiak-Bańska J. Circular Dichroism of Gold Bipyramid Dimers. J Phys Chem Lett 2021; 12:5208-5213. [PMID: 34042454 PMCID: PMC8279732 DOI: 10.1021/acs.jpclett.1c00792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chiral nanomaterials attract broad attention, as they offer new possibilities of modulation of optical properties and dissymmetry factors outperforming organic materials. Among various nanoparticles, plasmonic bipyramids present numerous advantages as building blocks of chiral nanomaterials (well-defined modulation of optical properties with the morphology of nanoparticles, narrow optical resonances, and high size and shape uniformity of synthesized particles). We study different possible orientations of gold bipyramids with respect to each other in dimers obtained by wet chemistry methods. For circularly polarized incident light we evaluate linear optical cross sections and plasmonic local field enhancement using COMSOL Multiphysics. We observe coupling of the nanoparticles' local fields and thus changes in extinction spectra, which modulate chiroptical properties of dimers. To assess the chirality of various arrangements, we note differences in cross sections for left- and right-handed polarized light which we further evaluate as the dissymmetry g-factor. Our results provide BPs configurations with dissymmetry factor as high as -0.3.
Collapse
|
4
|
Armstrong RE, Horáček M, Zijlstra P. Plasmonic Assemblies for Real-Time Single-Molecule Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003934. [PMID: 33258287 DOI: 10.1002/smll.202003934] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/09/2020] [Indexed: 05/11/2023]
Abstract
Their tunable optical properties and versatile surface functionalization have sparked applications of plasmonic assemblies in the fields of biosensing, nonlinear optics, and photonics. Particularly, in the field of biosensing, rapid advances have occurred in the use of plasmonic assemblies for real-time single-molecule sensing. Compared to individual particles, the use of assemblies as sensors provides stronger signals, more control over the optical properties, and access to a broader range of timescales. In the past years, they have been used to directly reveal single-molecule interactions, mechanical properties, and conformational dynamics. This review summarizes the development of real-time single-molecule sensors built around plasmonic assemblies. First, a brief overview of their optical properties is given, and then recent applications are described. The current challenges in the field and suggestions to overcome those challenges are discussed in detail. Their stability, specificity, and sensitivity as sensors provide a complementary approach to other single-molecule techniques like force spectroscopy and single-molecule fluorescence. In future applications, the impact in real-time sensing on ultralong timescales (hours) and ultrashort timescales (sub-millisecond), time windows that are difficult to access using other techniques, is particularly foreseen.
Collapse
Affiliation(s)
- Rachel E Armstrong
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| | - Matěj Horáček
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| | - Peter Zijlstra
- Department of Applied Physics & Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, Eindhoven, MB, 5600, the Netherlands
| |
Collapse
|
5
|
Ostovar B, Cai YY, Tauzin LJ, Lee SA, Ahmadivand A, Zhang R, Nordlander P, Link S. Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission. ACS NANO 2020; 14:15757-15765. [PMID: 32852941 DOI: 10.1021/acsnano.0c06771] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photoinduced light emission from plasmonic nanoparticles has attracted considerable interest within the scientific community because of its potential applications in sensing, imaging, and nanothermometry. One of the suggested mechanisms for the light emission from plasmonic nanoparticles is the plasmon-enhanced radiative recombination of hot carriers through inter- and intraband transitions. Here, we investigate the nanoparticle size dependence on the photoluminescence through a systematic analysis of gold nanorods with similar aspect ratios. Using single-particle emission and scattering spectroscopy along with correlated scanning electron microscopy and electromagnetic simulations, we calculate the emission quantum yields and Purcell enhancement factors for individual gold nanorods. Our results show strong size-dependent quantum yields in gold nanorods, with higher quantum yields for smaller gold nanorods. Furthermore, by determining the relative contributions to the photoluminescence from inter- and intraband transitions, we deduce that the observed size dependence predominantly originates from the size dependence of intraband transitions. Specifically, within the framework of Fermi's golden rule for radiative recombination of excited charge carriers, we demonstrate that the Purcell factor enhancement alone cannot explain the emission size dependence and that changes in the transition matrix elements must also occur. Those changes are due to electric field confinement enhancing intraband transitions. These results provide vital insight into the intraband relaxation in metallic nanoconfined systems and therefore are of direct importance to the rapidly developing field of plasmonic photocatalysis.
Collapse
|
6
|
Cai YY, Sung E, Zhang R, Tauzin LJ, Liu JG, Ostovar B, Zhang Y, Chang WS, Nordlander P, Link S. Anti-Stokes Emission from Hot Carriers in Gold Nanorods. NANO LETTERS 2019; 19:1067-1073. [PMID: 30657694 DOI: 10.1021/acs.nanolett.8b04359] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The origin of light emission from plasmonic nanoparticles has been strongly debated lately. It is present as the background of surface-enhanced Raman scattering and, despite the low yield, has been used for novel sensing and imaging applications because of its photostability. Although the role of surface plasmons as an enhancing antenna is widely accepted, the main controversy regarding the mechanism of the emission is its assignment to either radiative recombination of hot carriers (photoluminescence) or electronic Raman scattering (inelastic light scattering). We have previously interpreted the Stokes-shifted emission from gold nanorods as the Purcell effect enhanced radiative recombination of hot carriers. Here we specifically focused on the anti-Stokes emission from single gold nanorods of varying aspect ratios with excitation wavelengths below and above the interband transition threshold while still employing continuous wave lasers. Analysis of the intensity ratios between Stokes and anti-Stokes emission yields temperatures that can only be interpreted as originating from the excited electron distribution and not a thermally equilibrated phonon population despite not using pulsed laser excitation. Consistent with this result as well as previous emission studies using ultrafast lasers, the power-dependence of the upconverted emission is nonlinear and gives the average number of participating photons as a function of emission wavelength. Our findings thus show that hot carriers and photoluminescence play a major role in the upconverted emission.
Collapse
|
7
|
Cheng Y, Zhang W, Zhao J, Wen T, Hu A, Gong Q, Lu G. Understanding photoluminescence of metal nanostructures based on an oscillator model. NANOTECHNOLOGY 2018; 29:315201. [PMID: 29757167 DOI: 10.1088/1361-6528/aac44f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Scattering and absorption properties of metal nanostructures have been well understood based on the classic oscillator theory. Here, we demonstrate that photoluminescence of metal nanostructures can also be explained based on a classic model. The model shows that inelastic radiation of an oscillator resembles its resonance band after external excitation, and is related to the photoluminescence from metallic nanostructures. The understanding based on the classic oscillator model is in agreement with that predicted by a quantum electromagnetic cavity model. Moreover, by correlating a two-temperature model and the electron distributions, we demonstrate that both one-photon and two-photon luminescence of the metal nanostructures undergo the same mechanism. Furthermore, the model explains most of the emission characteristics of the metallic nanostructures, such as quantum yield, spectral shape, excitation polarization and power dependence. The model based on an oscillator provides an intuitive description of the photoluminescence process and may enable rapid optimization and exploration of the plasmonic properties.
Collapse
Affiliation(s)
- Yuqing Cheng
- State Key Laboratory for Mesoscopic Physics & Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Carattino A, Caldarola M, Orrit M. Gold Nanoparticles as Absolute Nanothermometers. NANO LETTERS 2018; 18:874-880. [PMID: 29272135 PMCID: PMC5817619 DOI: 10.1021/acs.nanolett.7b04145] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/21/2017] [Indexed: 05/19/2023]
Abstract
Nanothermometry is a challenging field that can open the door to intriguing questions ranging from biology and medicine to material sciences. Gold nanorods are excellent candidates to act as nanoprobes because they are reasonably bright emitters upon excitation with a monochromatic source. Gold nanoparticles are commonly used in photothermal therapy as efficient transducers of electromagnetic radiation into heat. In this work we use the spectrum of the anti-Stokes emission from gold nanorods irradiated in resonance to measure the absolute temperature of the nanoparticles and their surrounding medium without the need for a previous calibration. We show a 4 K accuracy in the determination of the temperature of the medium with spectral measurements of 180 s integration time. This procedure can be easily implemented in any microscope capable of acquiring emission spectra, and it is not limited to any specific shape of nanoparticles.
Collapse
|
9
|
Miles BT, Greenwood AB, Benito-Alifonso D, Tanner H, Galan MC, Verkade P, Gersen H. Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy. Sci Rep 2017; 7:44666. [PMID: 28317888 PMCID: PMC5357795 DOI: 10.1038/srep44666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Fluorescently labelled nanoparticles are routinely used in Correlative Light Electron Microscopy (CLEM) to combine the capabilities of two separate microscope platforms: fluorescent light microscopy (LM) and electron microscopy (EM). The inherent assumption is that the fluorescent label observed under LM colocalises well with the electron dense nanoparticle observed in EM. Herein we show, by combining single molecule fluorescent imaging with optical detection of the scattering from single gold nanoparticles, that for a commercially produced sample of 10 nm gold nanoparticles tagged to Alexa-633 there is in fact no colocalisation between the fluorescent signatures of Alexa-633 and the scattering associated with the gold nanoparticle. This shows that the attached gold nanoparticle quenches the fluorescent signal by ~95%, or less likely that the complex has dissociated. In either scenario, the observed fluorescent signal in fact arises from a large population of untagged fluorophores; rendering these labels potentially ineffective and misleading to the field.
Collapse
Affiliation(s)
- Benjamin T. Miles
- Nanophotonics and Nanophysics Group, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Alexander B. Greenwood
- Nanophotonics and Nanophysics Group, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | | | - Hugh Tanner
- Bristol Centre for Functional Nanomaterials, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
| | - Paul Verkade
- Wolfson Bioimaging Facility, University of Bristol, Bristol, BS8 1TD, UK
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Henkjan Gersen
- Nanophotonics and Nanophysics Group, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- Bristol Centre for Functional Nanomaterials, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| |
Collapse
|