1
|
Ling YH, Ye Z, Liang C, Yu C, Park G, Corden JL, Wu C. Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets. Nat Cell Biol 2024; 26:581-592. [PMID: 38548891 PMCID: PMC11210292 DOI: 10.1038/s41556-024-01382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024]
Abstract
Efficient gene expression requires RNA polymerase II (RNAPII) to find chromatin targets precisely in space and time. How RNAPII manages this complex diffusive search in three-dimensional nuclear space remains largely unknown. The disordered carboxy-terminal domain (CTD) of RNAPII, which is essential for recruiting transcription-associated proteins, forms phase-separated droplets in vitro, hinting at a potential role in modulating RNAPII dynamics. In the present study, we use single-molecule tracking and spatiotemporal mapping in living yeast to show that the CTD is required for confining RNAPII diffusion within a subnuclear region enriched for active genes, but without apparent phase separation into condensates. Both Mediator and global chromatin organization are required for sustaining RNAPII confinement. Remarkably, truncating the CTD disrupts RNAPII spatial confinement, prolongs target search, diminishes chromatin binding, impairs pre-initiation complex formation and reduces transcription bursting. The present study illuminates the pivotal role of the CTD in driving spatiotemporal confinement of RNAPII for efficient gene expression.
Collapse
Affiliation(s)
- Yick Hin Ling
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ziyang Ye
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Chloe Liang
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Chuofan Yu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Giho Park
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffry L Corden
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Feng C, Wang J, Chu X. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes. J Mol Cell Biol 2023; 15:mjad042. [PMID: 37365687 PMCID: PMC10782906 DOI: 10.1093/jmcb/mjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
The organized three-dimensional chromosome architecture in the cell nucleus provides scaffolding for precise regulation of gene expression. When the cell changes its identity in the cell-fate decision-making process, extensive rearrangements of chromosome structures occur accompanied by large-scale adaptations of gene expression, underscoring the importance of chromosome dynamics in shaping genome function. Over the last two decades, rapid development of experimental methods has provided unprecedented data to characterize the hierarchical structures and dynamic properties of chromosomes. In parallel, these enormous data offer valuable opportunities for developing quantitative computational models. Here, we review a variety of large-scale polymer models developed to investigate the structures and dynamics of chromosomes. Different from the underlying modeling strategies, these approaches can be classified into data-driven ('top-down') and physics-based ('bottom-up') categories. We discuss their contributions to offering valuable insights into the relationships among the structures, dynamics, and functions of chromosomes and propose the perspective of developing data integration approaches from different experimental technologies and multidisciplinary theoretical/simulation methods combined with different modeling strategies.
Collapse
Affiliation(s)
- Cibo Feng
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Jin Wang
- Department of Chemistry and Physics, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
3
|
Kumari K, Ravi Prakash J, Padinhateeri R. Heterogeneous interactions and polymer entropy decide organization and dynamics of chromatin domains. Biophys J 2022; 121:2794-2812. [PMID: 35672951 PMCID: PMC9382282 DOI: 10.1016/j.bpj.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
Chromatin is known to be organized into multiple domains of varying sizes and compaction. While these domains are often imagined as static structures, they are highly dynamic and show cell-to-cell variability. Since processes such as gene regulation and DNA replication occur in the context of these domains, it is important to understand their organization, fluctuation, and dynamics. To simulate chromatin domains, one requires knowledge of interaction strengths among chromatin segments. Here, we derive interaction-strength parameters from experimentally known contact maps and use them to predict chromatin organization and dynamics. Taking two domains on the human chromosome as examples, we investigate its three-dimensional organization, size/shape fluctuations, and dynamics of different segments within a domain, accounting for hydrodynamic effects. Considering different cell types, we quantify changes in interaction strengths and chromatin shape fluctuations in different epigenetic states. Perturbing the interaction strengths systematically, we further investigate how epigenetic-like changes can alter the spatio-temporal nature of the domains. Our results show that heterogeneous weak interactions are crucial in determining the organization of the domains. Computing effective stiffness and relaxation times, we investigate how perturbations in interactions affect the solid- and liquid-like nature of chromatin domains. Quantifying dynamics of chromatin segments within a domain, we show how the competition between polymer entropy and interaction energy influence the timescales of loop formation and maintenance of stable loops.
Collapse
Affiliation(s)
- Kiran Kumari
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India; Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - J Ravi Prakash
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
4
|
Nakahata S, Komoto T, Fujii M, Awazu A. Mathematical model of chromosomal dynamics during DNA double strand break repair in budding yeast. Biophys Physicobiol 2022; 19:1-12. [PMID: 35749629 PMCID: PMC9160732 DOI: 10.2142/biophysico.bppb-v19.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
During the repair of double-strand breaks (DSBs) in DNA, active mobilizations for conformational changes in chromosomes have been widely observed in eukaryotes, from yeast to animal and plant cells. DSB-damaged loci in the yeast genome showed increased mobility and relocation to the nuclear periphery. However, the driving forces behind DSB-induced chromatin dynamics remain unclear. In this study, mathematical models of normal and DSB-damaged yeast chromosomes were developed to simulate their structural dynamics. The effects of histone degradation in the whole nucleus and the change in the physical properties of damaged loci due to the binding of SUMOylated repair proteins were considered in the model of DSB-induced chromosomes based on recent experimental results. The simulation results reproduced DSB-induced changes to structural and dynamical features by which the combination of whole nuclear histone degradation and the rigid structure formation of repair protein accumulations on damaged loci were suggested to be primary contributors to the process by which damaged loci are relocated to the nuclear periphery.
Collapse
Affiliation(s)
- Shinjiro Nakahata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tetsushi Komoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Quantitative Analysis of Spatial Distributions of All tRNA Genes in Budding Yeast. Biophys J 2020; 118:2181-2192. [PMID: 31951810 DOI: 10.1016/j.bpj.2019.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022] Open
Abstract
In the budding yeast nucleus, transfer RNA (tRNA) genes are considered to localize in the vicinity of the nucleolus; however, the use of Hi-C and fluorescent repressor-operator system techniques has clearly indicated that the tRNA genes are distributed not only around the nucleolus but also at other nuclear locations. However, there are some discrepancies between Hi-C data analysis and the results indicated from fluorescence microscopy data. To fill these gaps, we systematically clarified the spatial arrangements of all tRNA genes in the budding yeast nucleus using the genome simulation model developed by us. The simulation results revealed that out of 275 tRNA genes, 58% were found to be spatially distributed around the centromeres, 16% were distributed around the ribosomal DNA regions, and the remaining 26% were distributed between the centromeres and ribosomal DNA regions. Furthermore, 1% of all tRNA genes were found to be spatially distributed around the nuclear envelope, 30% were distributed around the center of the nucleus, and the remaining 69% were distributed between the nuclear envelope and the center of the nucleus. The percentage distributions were highly similar to those of the 176 tRNA genes encoding tRNAs having an anticodon for the optimal codons. The simulation results also revealed that the spatial arrangements of tRNA genes were affected by linear genomic distance from the tethering elements such as the centromeres or telomeres; however, the distance was only one of the factors to determine spatial distribution. This study also investigates whether tRNA gene transcriptional levels depend on the arrangements in the budding yeast nucleus by integrating the genome simulation model with tRNA sequencing data. The results suggest that the transcriptional levels did not depend on the arrangements in the nucleus. By using the genome simulation model, we showed the possibility of quantitatively analyzing genome structures.
Collapse
|
7
|
Trotta E. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast. J Biol Chem 2019; 294:12349-12358. [PMID: 31235518 PMCID: PMC6699833 DOI: 10.1074/jbc.ra119.008529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/19/2019] [Indexed: 07/24/2023] Open
Abstract
In yeast (Saccharomyces cerevisiae), the synthesis of tRNAs by RNA polymerase III (RNAP III) down-regulates the transcription of the nearby RNAP II-transcribed genes by a mechanism that is poorly understood. To clarify the basis of this tRNA gene-mediated (TGM) silencing, here, conducting a bioinformatics analysis of available ChIP-chip and ChIP-sequencing genomic data from yeast, we investigated whether the RNAP III transcriptional machinery can recruit protein factors required for RNAP II transcription. An analysis of 46 genome-wide protein-density profiles revealed that 12 factors normally implicated in RNAP II-mediated gene transcription are more enriched at tRNA than at mRNA loci. These 12 factors typically have RNA-binding properties, participate in the termination stage of the RNAP II transcription, and preferentially localize to the tRNA loci by a mechanism that apparently is based on the RNAP III transcription level. The factors included two kinases of RNAP II (Bur1 and Ctk1), a histone demethylase (Jhd2), and a mutated form of a nucleosome-remodeling factor (Spt6) that have never been reported to be recruited to tRNA loci. Moreover, we show that the expression levels of RNAP II-transcribed genes downstream of tRNA loci correlate with the distance from the tRNA gene by a mechanism that depends on their orientation. These results are consistent with the notion that pre-tRNAs recruit RNAP II-associated factors, thereby reducing the availability of these factors for RNAP II transcription and contributing, at least in part, to the TGM-silencing mechanism.
Collapse
Affiliation(s)
- Edoardo Trotta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.
| |
Collapse
|
8
|
Sun D, Tian L, Ma B. Spatial organization of the transcriptional regulatory network of
Saccharomyces cerevisiae. FEBS Lett 2019; 593:876-884. [DOI: 10.1002/1873-3468.13371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Dong‐Qing Sun
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Liu Tian
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Bin‐Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| |
Collapse
|
9
|
Lin JL, Ekas H, Deaner M, Alper HS. CRISPR-PIN: Modifying gene position in the nucleus via dCas9-mediated tethering. Synth Syst Biotechnol 2019; 4:73-78. [PMID: 30820479 PMCID: PMC6378893 DOI: 10.1016/j.synbio.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 01/24/2023] Open
Abstract
Spatial organization of DNA within the nucleus is important for controlling DNA replication and repair, genetic recombination, and gene expression. Here, we present CRISPR-PIN, a CRISPR/dCas9-based tool that allows control of gene Position in the Nucleus for the yeast Saccharomyces cerevisiae. This approach utilizes a cohesin-dockerin interaction between dCas9 and a perinuclear protein. In doing so, we demonstrate that a single gRNA can enable programmable interaction of nuclear DNA with the nuclear periphery. We demonstrate the utility of this approach for two applications: the controlled segregation of an acentric plasmid and the re-localization of five endogenous loci. In both cases, we obtain results on par with prior reports using traditional, more cumbersome genetic systems. Thus, CRISPR-PIN offers the opportunity for future studies of chromosome biology and gene localization. dCas9 artificially localized to nuclear periphery using cohesin-dockerin tether to ESC1. Targeting dCas9 to acentric plasmid allows rescue of plasmid segregation phenotype. 5 unique chromosomal loci re-localized to nuclear periphery. dCas9 tethering allows control over target gene Position In the Nucleus (CRISPR-PIN).
Collapse
Affiliation(s)
- Jyun-Liang Lin
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Holly Ekas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
10
|
Gürsoy G, Xu Y, Liang J. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model. PLoS Comput Biol 2017; 13:e1005658. [PMID: 28704374 PMCID: PMC5531658 DOI: 10.1371/journal.pcbi.1005658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022] Open
Abstract
Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles. The architecture of the cell nucleus and the spatial organization of the genome are important in determining nuclear functions. Single-cell imaging techniques and chromosome conformation capture (3C) based methods have provided a wealth of information on the spatial organization of chromosomes. Here we describe a multi-chromosome ensemble model of chromatin chains for understanding the folding principles of budding yeast genome. By overcoming severe challenges in sampling self-avoiding chromatin chains in nuclear confinement, we succeed in generating a large number of model genomes of budding yeast. Our model predicts chromatin interactions that have good correlation with experimental measurements. Our results showed that the spatial confinement of cell nucleus and excluded-volume effect are key determinants of the folding behavior of yeast chromosomes, and largely account for the observed intra-chromosomal interactions. Furthermore, we determined the specific roles of individual nuclear landmarks and biochemical factors, and our analysis showed that centromere tethering largely determines inter-chromosomal interactions. In addition, we were able to infer biological properties from the organization of modeled genomes. We found that the spatial locations of important elements such as fragile sites and tRNA genes are largely determined by the tethering of centromeres to the Spindle Pole Body. We further showed that many of these spatial locations can be predicted by using the genomic distances to the centromeres. Overall, our results revealed important insight into the organizational principles of the budding yeast genome and predicted a number of important biological findings that are fully experimentally testable.
Collapse
Affiliation(s)
- Gamze Gürsoy
- The Richard and Loan Hill Department of Bioengineering, Program in Bioinformatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yun Xu
- The Richard and Loan Hill Department of Bioengineering, Program in Bioinformatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jie Liang
- The Richard and Loan Hill Department of Bioengineering, Program in Bioinformatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|