1
|
Song D, Liu Y, Husari A, Kotz-Helmer F, Tomakidi P, Rapp BE, Rühe J. Generation of Tailored Multi-Material Microstructures Through One-Step Direct Laser Writing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405586. [PMID: 39235375 DOI: 10.1002/smll.202405586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Direct laser writing has gained remarkable popularity by offering architectural control of 3D objects at submicron scales. However, it faces limitations when the fabrication of microstructures comprising multiple materials is desired. The generation processes of multi-material microstructures are often very complex, requiring meticulous alignment, as well as a series of step-and-repeat writing and development of the materials. Here, a novel material system based on multilayers of chemically tailored polymers containing anthraquinone crosslinker units is demonstrated. Upon two-photon excitation, the crosslinkers only require nearby aliphatic C,H units as reaction partners to form a crosslinked network. The desired structure can be written into a solid multi-layered material system, wherein the properties of each material can be designed at the molecular level. In this way, C,H insertion crosslinking (CHic) of the polymers within each layer, along with simultaneous reaction at their interfaces, is performed, leading to the one-step fabrication of multi-material microstructures. A multi-material 3D scaffold with a sixfold symmetry is produced to precisely control the adhesion of cells both concerning surface chemistry and topology. The demonstrated material system shows great promise for the fabrication of 3D microstructures with high precision, intricate geometries and customized functionalities.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT - Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Yizheng Liu
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bastian E Rapp
- Cluster of Excellence livMatS @ FIT - Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT - Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Dong X, Sun Q, Geng J, Liu X, Wei Q. Fiber Flexibility Reconciles Matrix Recruitment and the Fiber Modulus to Promote Cell Mechanosensing. NANO LETTERS 2024; 24:4029-4037. [PMID: 38526438 DOI: 10.1021/acs.nanolett.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The mechanical interaction between cells and the extracellular matrix is pervasive in biological systems. On fibrous substrates, cells possess the ability to recruit neighboring fibers, thereby augmenting their own adhesion and facilitating the generation of mechanical cues. However, the matrices with high moduli impede fiber recruitment, restricting the cell mechanoresponse. Herein, by harnessing the inherent swelling properties of gelatin, the flexible gelatin methacryloyl network empowers cells to recruit fibers spanning a broad spectrum of physiological moduli during adhesion. The high flexibility concurrently facilitates the optimization of fiber distribution, deformability, and modulus, contributing to the promotion of cell mechanosensing. Consequently, the randomly distributed flexible fibers with high moduli maximize the cell adhesive forces. This study uncovers the impact of fiber recruitment on cell mechanosensing and introduces fiber flexibility as a previously unexplored property, offering an innovative perspective for the design and development of novel biomaterials.
Collapse
Affiliation(s)
- Xiangyu Dong
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Department of Nephrology, Kidney Research Institute, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qian Sun
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiwen Geng
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaojing Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, P. R. China
| | - Qiang Wei
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Link R, Jaggy M, Bastmeyer M, Schwarz US. Modelling cell shape in 3D structured environments: A quantitative comparison with experiments. PLoS Comput Biol 2024; 20:e1011412. [PMID: 38574170 PMCID: PMC11020930 DOI: 10.1371/journal.pcbi.1011412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/16/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Cell shape plays a fundamental role in many biological processes, including adhesion, migration, division and development, but it is not clear which shape model best predicts three-dimensional cell shape in structured environments. Here, we compare different modelling approaches with experimental data. The shapes of single mesenchymal cells cultured in custom-made 3D scaffolds were compared by a Fourier method with surfaces that minimize area under the given adhesion and volume constraints. For the minimized surface model, we found marked differences to the experimentally observed cell shapes, which necessitated the use of more advanced shape models. We used different variants of the cellular Potts model, which effectively includes both surface and bulk contributions. The simulations revealed that the Hamiltonian with linear area energy outperformed the elastic area constraint in accurately modelling the 3D shapes of cells in structured environments. Explicit modelling the nucleus did not improve the accuracy of the simulated cell shapes. Overall, our work identifies effective methods for accurately modelling cellular shapes in complex environments.
Collapse
Affiliation(s)
- Rabea Link
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Mona Jaggy
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Kroll J, Ruiz-Fernandez MJA, Braun MB, Merrin J, Renkawitz J. Quantifying the Probing and Selection of Microenvironmental Pores by Motile Immune Cells. Curr Protoc 2022; 2:e407. [PMID: 35384410 DOI: 10.1002/cpz1.407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune cells are constantly on the move through multicellular organisms to explore and respond to pathogens and other harmful insults. While moving, immune cells efficiently traverse microenvironments composed of tissue cells and extracellular fibers, which together form complex environments of various porosity, stiffness, topography, and chemical composition. In this protocol we describe experimental procedures to investigate immune cell migration through microenvironments of heterogeneous porosity. In particular, we describe micro-channels, micro-pillars, and collagen networks as cell migration paths with alternative pore size choices. Employing micro-channels or micro-pillars that divide at junctions into alternative paths with initially differentially sized pores allows us to precisely (1) measure the cellular translocation time through these porous path junctions, (2) quantify the cellular preference for individual pore sizes, and (3) image cellular components like the nucleus and the cytoskeleton. This reductionistic experimental setup thus can elucidate how immune cells perform decisions in complex microenvironments of various porosity like the interstitium. The setup further allows investigation of the underlying forces of cellular squeezing and the consequences of cellular deformation on the integrity of the cell and its organelles. As a complementary approach that does not require any micro-engineering expertise, we describe the usage of three-dimensional collagen networks with different pore sizes. Whereas we here focus on dendritic cells as a model for motile immune cells, the described protocols are versatile as they are also applicable for other immune cell types like neutrophils and non-immune cell types such as mesenchymal and cancer cells. In summary, we here describe protocols to identify the mechanisms and principles of cellular probing, decision making, and squeezing during cellular movement through microenvironments of heterogeneous porosity. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Immune cell migration in micro-channels and micro-pillars with defined pore sizes Support Protocol 1: Epoxy replica of generated and/or published micro-structures Support Protocol 2: Dendritic cell differentiation Basic Protocol 2: Immune cell migration in 3D collagen networks of variable pore sizes.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| | - Mauricio J A Ruiz-Fernandez
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| | - Malte B Braun
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| |
Collapse
|
5
|
Blumberg JW, Schwarz US. Comparison of direct and inverse methods for 2.5D traction force microscopy. PLoS One 2022; 17:e0262773. [PMID: 35051243 PMCID: PMC8775276 DOI: 10.1371/journal.pone.0262773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Essential cellular processes such as cell adhesion, migration and division strongly depend on mechanical forces. The standard method to measure cell forces is traction force microscopy (TFM) on soft elastic substrates with embedded marker beads. While in 2D TFM one only reconstructs tangential forces, in 2.5D TFM one also considers normal forces. Here we present a systematic comparison between two fundamentally different approaches to 2.5D TFM, which in particular require different methods to deal with noise in the displacement data. In the direct method, one calculates strain and stress tensors directly from the displacement data, which in principle requires a divergence correction. In the inverse method, one minimizes the difference between estimated and measured displacements, which requires some kind of regularization. By calculating the required Green's functions in Fourier space from Boussinesq-Cerruti potential functions, we first derive a new variant of 2.5D Fourier Transform Traction Cytometry (FTTC). To simulate realistic traction patterns, we make use of an analytical solution for Hertz-like adhesion patches. We find that FTTC works best if only tangential forces are reconstructed, that 2.5D FTTC is more precise for small noise, but that the performance of the direct method approaches the one of 2.5D FTTC for larger noise, before both fail for very large noise. Moreover we find that a divergence correction is not really needed for the direct method and that it profits more from increased resolution than the inverse method.
Collapse
Affiliation(s)
- Johannes W. Blumberg
- Heidelberg University, Institute for Theoretical Physics and Bioquant, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Heidelberg University, Institute for Theoretical Physics and Bioquant, Heidelberg, Germany
| |
Collapse
|
6
|
Weißenbruch K, Grewe J, Hippler M, Fladung M, Tremmel M, Stricker K, Schwarz US, Bastmeyer M. Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics. eLife 2021; 10:71888. [PMID: 34374341 PMCID: PMC8391736 DOI: 10.7554/elife.71888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Justin Grewe
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Magdalena Fladung
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Moritz Tremmel
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kathrin Stricker
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich Sebastian Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
7
|
Bertels S, Jaggy M, Richter B, Keppler S, Weber K, Genthner E, Fischer AC, Thiel M, Wegener M, Greiner AM, Autenrieth TJ, Bastmeyer M. Geometrically defined environments direct cell division rate and subcellular YAP localization in single mouse embryonic stem cells. Sci Rep 2021; 11:9269. [PMID: 33927254 PMCID: PMC8084931 DOI: 10.1038/s41598-021-88336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/01/2021] [Indexed: 01/09/2023] Open
Abstract
Mechanotransduction via yes-associated protein (YAP) is a central mechanism for decision-making in mouse embryonic stem cells (mESCs). Nuclear localization of YAP is tightly connected to pluripotency and increases the cell division rate (CDR). How the geometry of the extracellular environment influences mechanotransduction, thereby YAP localization, and decision-making of single isolated mESCs is largely unknown. To investigate this relation, we produced well-defined 2D and 2.5D microenvironments and monitored CDR and subcellular YAP localization in single mESCs hence excluding cell–cell interactions. By systematically varying size and shape of the 2D and 2.5D substrates we observed that the geometry of the growth environment affects the CDR. Whereas CDR increases with increasing adhesive area in 2D, CDR is highest in small 2.5D micro-wells. Here, mESCs attach to all four walls and exhibit a cross-shaped cell and nuclear morphology. This observation indicates that changes in cell shape are linked to a high CDR. Inhibition of actomyosin activity abrogate these effects. Correspondingly, nuclear YAP localization decreases in inhibitor treated cells, suggesting a relation between cell shape, intracellular forces, and cell division rate. The simplicity of our system guarantees high standardization and reproducibility for monitoring stem cell reactions and allows addressing a variety of fundamental biological questions on a single cell level.
Collapse
Affiliation(s)
- Sarah Bertels
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Mona Jaggy
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Benjamin Richter
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Stephan Keppler
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Kerstin Weber
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Elisa Genthner
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Andrea C Fischer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany
| | - Michael Thiel
- Nanoscribe GmbH, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Alexandra M Greiner
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany. .,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany. .,Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
8
|
Wilson RE, Jaquins-Gerstl A, Chen J, Rerick M, Weber SG. Electroosmotic Perfusion-Microdialysis Probe Created by Direct Laser Writing for Quantitative Assessment of Leucine Enkephalin Hydrolysis by Insulin-Regulated Aminopeptidase in Vivo. Anal Chem 2020; 92:14558-14567. [PMID: 32961052 PMCID: PMC11027065 DOI: 10.1021/acs.analchem.0c02799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are many processes that actively alter the concentrations of solutes in the extracellular space. Enzymatic reactions, either by soluble enzymes or membrane-bound ectoenzymes, and uptake or clearance are two such processes. Investigations of ectoenzymatic reactions in vivo is challenging, particularly in the brain. Studies using microdialysis have revealed some qualitative information about what enzymes may be present, but microdialysis is a sampling technique so it is not designed to control conditions such as a substrate concentration outside the probe. Micropush-pull perfusion has been used to determine which nitric oxide synthase enzymes are active in discrete regions of the rat retina. Ectopeptidases are a particularly important class of ectoenzymes. As far as it is known, the extracellular activity of active peptides in the brain is controlled by ectopeptidases. To understand ectopeptidase activity, we developed a physical probe and an accompanying method. The probe has a two-channel source that supplies substrate or substrate plus inhibitor using electroosmotic perfusion (EOP). It also has a microdialysis probe to collect products and unreacted substrate. The method provides quantitative estimates of substrate-to-product conversion and the influence of inhibitors on this process. The quantitative estimates are made possible by including a d-amino acid-containing peptide analog of the substrate in the substrate-containing solution infused. Quantitative analysis of substrate, substrate analog, and products is carried out by quantitative, online capillary liquid chromatography-tandem mass spectrometry. The electroosmotic perfusion-microdialysis probe and associated method were used to determine the effect of the selective inhibitor HFI-419 on insulin-regulated aminopeptidase (EC 3.4.11.3) in the rat neocortex.
Collapse
Affiliation(s)
- Rachael E Wilson
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Jun Chen
- Department of Electrical and Computer Engineering, and Petersen Institute of NanoScience and Engineering University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Michael Rerick
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Stephen G Weber
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| |
Collapse
|
9
|
Hippler M, Weißenbruch K, Richler K, Lemma ED, Nakahata M, Richter B, Barner-Kowollik C, Takashima Y, Harada A, Blasco E, Wegener M, Tanaka M, Bastmeyer M. Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. SCIENCE ADVANCES 2020; 6:6/39/eabc2648. [PMID: 32967835 PMCID: PMC7531888 DOI: 10.1126/sciadv.abc2648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/07/2020] [Indexed: 05/19/2023]
Abstract
Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between β-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors.
Collapse
Affiliation(s)
- Marc Hippler
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Kai Richler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Enrico D Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Benjamin Richter
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Eva Blasco
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Motomu Tanaka
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| |
Collapse
|
10
|
Kassianidou E, Probst D, Jäger J, Lee S, Roguet AL, Schwarz US, Kumar S. Extracellular Matrix Geometry and Initial Adhesive Position Determine Stress Fiber Network Organization during Cell Spreading. Cell Rep 2020; 27:1897-1909.e4. [PMID: 31067472 DOI: 10.1016/j.celrep.2019.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023] Open
Abstract
Three-dimensional matrices often contain highly structured adhesive tracks that require cells to turn corners and bridge non-adhesive areas. Here, we investigate these complex processes using micropatterned cell adhesive frames. Spreading kinetics on these matrices depend strongly on initial adhesive position and are predicted by a cellular Potts model (CPM), which reflects a balance between adhesion and intracellular tension. As cells spread, new stress fibers (SFs) assemble periodically and parallel to the leading edge, with spatial intervals of ∼2.5 μm, temporal intervals of ∼15 min, and characteristic lifetimes of ∼50 min. By incorporating these rules into the CPM, we can successfully predict SF network architecture. Moreover, we observe broadly similar behavior when we culture cells on arrays of discrete collagen fibers. Our findings show that ECM geometry and initial cell position strongly determine cell spreading and that cells encode a memory of their spreading history through SF network organization.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA
| | - Dimitri Probst
- Heidelberg University, Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Julia Jäger
- Heidelberg University, Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA
| | - Anne-Lou Roguet
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; École Polytechnique, 91120 Palaiseau, France
| | - Ulrich Sebastian Schwarz
- Heidelberg University, Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, 69120 Heidelberg, Germany.
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA.
| |
Collapse
|
11
|
Hippler M, Lemma ED, Bertels S, Blasco E, Barner-Kowollik C, Wegener M, Bastmeyer M. 3D Scaffolds to Study Basic Cell Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808110. [PMID: 30793374 DOI: 10.1002/adma.201808110] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Indexed: 05/21/2023]
Abstract
Mimicking the properties of the extracellular matrix is crucial for developing in vitro models of the physiological microenvironment of living cells. Among other techniques, 3D direct laser writing (DLW) has emerged as a promising technology for realizing tailored 3D scaffolds for cell biology studies. Here, results based on DLW addressing basic biological issues, e.g., cell-force measurements and selective 3D cell spreading on functionalized structures are reviewed. Continuous future progress in DLW materials engineering and innovative approaches for scaffold fabrication will enable further applications of DLW in applied biomedical research and tissue engineering.
Collapse
Affiliation(s)
- Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sarah Bertels
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Eva Blasco
- Macromolecular Architectures, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128, Karlsruhe, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Bimodal sensing of guidance cues in mechanically distinct microenvironments. Nat Commun 2018; 9:4891. [PMID: 30459308 PMCID: PMC6244288 DOI: 10.1038/s41467-018-07290-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
Contact guidance due to extracellular matrix architecture is a key regulator of carcinoma invasion and metastasis, yet our understanding of how cells sense guidance cues is limited. Here, using a platform with variable stiffness that facilitates uniaxial or biaxial matrix cues, or competing E-cadherin adhesions, we demonstrate distinct mechanoresponsive behavior. Through disruption of traction forces, we observe a profound phenotypic shift towards a mode of dendritic protrusion and identify bimodal processes that govern guidance sensing. In contractile cells, guidance sensing is strongly dependent on formins and FAK signaling and can be perturbed by disrupting microtubule dynamics, while low traction conditions initiate fluidic-like dendritic protrusions that are dependent on Arp2/3. Concomitant disruption of these bimodal mechanisms completely abrogates the contact guidance response. Thus, guidance sensing in carcinoma cells depends on both environment architecture and mechanical properties and targeting the bimodal responses may provide a rational strategy for disrupting metastatic behavior. Invasive cells respond to contact guidance cues during migration. Here, using micro- and nanopatterning with different ligands and varying stiffness, the authors find that cells can make cellular protrusions through both contractility-dependent and contractility-independent means.
Collapse
|