1
|
Anand SK. A computer simulation study of a chiral active ring polymer. J Chem Phys 2024; 161:184901. [PMID: 39513442 DOI: 10.1063/5.0232538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
We investigate a ring polymer under the influence of chiral active Brownian forces in two dimensions using coarse-grained computer simulations. We observe a non-monotonic behavior of the radius of gyration of an active Brownian ring as a function of active force. However, the shrinkage of the ring in the intermediate strength of active forces becomes more pronounced in the presence of chiral active forces, and the shrinkage is monotonic at a given activity level as a function of the angular frequency controlling the direction of the active force. The distribution of radius of gyration, inter-monomer distance, and radial distribution suggest that the monomers come close to each other, eventually leading to the shrinkage of the ring. Moreover, the bond-correlation suggests that the chirality introduces a local folding of the monomers. Furthermore, using the diameter correlation function, we show that the ring performs tank-treading motion with a frequency following power-law relation with active force with exponent 3/2. The mean squared displacement of the monomers further assists the tank-treading dynamics by exhibiting oscillatory behavior.
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Janzen G, Matoz-Fernandez DA. Density and inertia effects on two-dimensional active semiflexible filament suspensions. SOFT MATTER 2024; 20:6618-6626. [PMID: 39108173 DOI: 10.1039/d4sm00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We examine the influence of density on the transition between chain and spiral structures in planar assemblies of active semiflexible filaments, utilizing detailed numerical simulations. We focus on how increased density, and higher Péclet numbers, affect the activity-induced transition spiral state in a semiflexible, self-avoiding active chain. Our findings show that increasing the density causes the spiral state to break up, reverting to a motile chain-like shape. This results in a density-dependent reentrant phase transition from spirals back to open chains. We attribute this phenomenon to an inertial effect observed at the single polymer level, where increased persistence length due to inertia has been shown in recent three-dimensional studies to cause polymers to open up. Our two-dimensional simulations further reveal that a reduction in the damping coefficient leads to partial unwinding of the spirals, forming longer arms. In suspension, interactions among these extended arms can trigger a complete unwinding of the spirals, driven by the combined effects of density and inertia.
Collapse
Affiliation(s)
- Giulia Janzen
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| | - D A Matoz-Fernandez
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Xu TL, Qin CR, Tang B, Gao JC, Zhou J, Chen K, Zhang TH, Tian WD. Constrained motion of self-propelling eccentric disks linked by a spring. J Chem Phys 2024; 161:064905. [PMID: 39140446 DOI: 10.1063/5.0217158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
It has been supposed that the interplay of elasticity and activity plays a key role in triggering the non-equilibrium behaviors in biological systems. However, the experimental model system is missing to investigate the spatiotemporally dynamical phenomena. Here, a model system of an active chain, where active eccentric-disks are linked by a spring, is designed to study the interplay of activity, elasticity, and friction. Individual active chain exhibits longitudinal and transverse motions; however, it starts to self-rotate when pinning one end and self-beat when clamping one end. In addition, our eccentric-disk model can qualitatively reproduce such behaviors and explain the unusual self-rotation of the first disk around its geometric center. Furthermore, the structure and dynamics of long chains were studied via simulations without steric interactions. It was found that a hairpin conformation emerges in free motion, while in the constrained motions, the rotational and beating frequencies scale with the flexure number (the ratio of self-propelling force to bending rigidity), χ, as ∼(χ)4/3. Scaling analysis suggests that it results from the balance between activity and energy dissipation. Our findings show that topological constraints play a vital role in non-equilibrium synergy behaviors.
Collapse
Affiliation(s)
- Tian-Liang Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Chao-Ran Qin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Bin Tang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Jin-Cheng Gao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Jiankang Zhou
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Tian Hui Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Philipps CA, Gompper G, Winkler RG. Dynamics of active polar ring polymers. Phys Rev E 2022; 105:L062501. [PMID: 35854564 DOI: 10.1103/physreve.105.l062501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The conformational and dynamical properties of isolated semiflexible active polar ring polymers are investigated analytically. A ring is modeled as a continuous Gaussian polymer exposed to tangential active forces. The analytical solution of the linear non-Hermitian equation of motion in terms of an eigenfunction expansion shows that ring conformations are independent of activity. In contrast, activity strongly affects the internal ring dynamics and yields characteristic time regimes, which are absent in passive rings. On intermediate timescales, flexible rings show an activity-enhanced diffusive regime, while semiflexible rings exhibit ballistic motion. Moreover, a second active time regime emerges on longer timescales, where rings display a snake-like motion, which is reminiscent to a tank-treading rotational dynamics in shear flow, dominated by the mode with the longest relaxation time.
Collapse
Affiliation(s)
- Christian A Philipps
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| |
Collapse
|
5
|
Paul S, Majumder S, Das SK, Janke W. Effects of alignment activity on the collapse kinetics of a flexible polymer. SOFT MATTER 2022; 18:1978-1990. [PMID: 35023525 DOI: 10.1039/d1sm01055g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamics of various biological filaments can be understood within the framework of active polymer models. Here we consider a bead-spring model for a flexible polymer chain in which the active interaction among the beads is introduced via an alignment rule adapted from the Vicsek model. Following quenching from the high-temperature coil phase to a low-temperature state point, we study the coarsening kinetics via molecular dynamics (MD) simulations using the Langevin thermostat. For the passive polymer case the low-temperature equilibrium state is a compact globule. The results from our MD simulations reveal that though the globular state is also the typical final state in the active case, the nonequilibrium pathways to arrive at such a state differ from the picture for the passive case due to the alignment interaction among the beads. We notice that deviations from the intermediate "pearl-necklace"-like arrangement, which is observed in the passive case, and the formation of more elongated dumbbell-like structures increase with increasing activity. Furthermore, it appears that while a small active force on the beads certainly makes the coarsening process much faster, there exists a nonmonotonic dependence of the collapse time on the strength of active interaction. We quantify these observations by comparing the scaling laws for the collapse time and growth of pearls with the passive case.
Collapse
Affiliation(s)
- Subhajit Paul
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560064, India.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
6
|
Shen C, Qin CR, Xu TL, Chen K, Tian WD. Structure and dynamics of an active polymer adsorbed on the surface of a cylinder. SOFT MATTER 2022; 18:1489-1497. [PMID: 35089305 DOI: 10.1039/d1sm01658j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structure and dynamics of an active polymer on a smooth cylindrical surface are studied by Brownian dynamics simulations. The effect of an active force on the polymer adsorption behavior and the combined effect of chain mobility, length N, rigidity κ, and cylinder radius, R, on the phase diagrams are systemically investigated. We find that complete adsorption is replaced by the irregular alternative adsorption/desorption process at a large driving force. Three typical (spiral, helix-like, and rod-like) conformations of the active polymer are observed, dependent on N, κ, and R. Dynamically, the polymer shows rotational motion in the spiral state, snake-like motion in the intermediate state, and straight translational motion without turning back in the rod-like state. In the spiral state, we find that the rotation velocity ω and the chain length follow a power-law relation ω ∼ N-0.42, consistent with the torque-balance theory of general Archimedean spirals. And the polymer shows super-diffusive behavior along the cylinder for a long time in the helix-like and rod-like states. Our results highlight that the mobility, rigidity, and curvature of surface can be used to regulate the polymer behavior.
Collapse
Affiliation(s)
- Chen Shen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Chao-Ran Qin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Tian-Liang Xu
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
7
|
Eisenstecken T, Winkler RG. Path integral description of semiflexible active Brownian polymers. J Chem Phys 2022; 156:064105. [DOI: 10.1063/5.0081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
8
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
9
|
Vliegenthart GA, Ravichandran A, Ripoll M, Auth T, Gompper G. Filamentous active matter: Band formation, bending, buckling, and defects. SCIENCE ADVANCES 2020; 6:eaaw9975. [PMID: 32832652 PMCID: PMC7439626 DOI: 10.1126/sciadv.aaw9975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/05/2020] [Indexed: 06/01/2023]
Abstract
Motor proteins drive persistent motion and self-organization of cytoskeletal filaments. However, state-of-the-art microscopy techniques and continuum modeling approaches focus on large length and time scales. Here, we perform component-based computer simulations of polar filaments and molecular motors linking microscopic interactions and activity to self-organization and dynamics from the filament level up to the mesoscopic domain level. Dynamic filament cross-linking and sliding and excluded-volume interactions promote formation of bundles at small densities and of active polar nematics at high densities. A buckling-type instability sets the size of polar domains and the density of topological defects. We predict a universal scaling of the active diffusion coefficient and the domain size with activity, and its dependence on parameters like motor concentration and filament persistence length. Our results provide a microscopic understanding of cytoplasmic streaming in cells and help to develop design strategies for novel engineered active materials.
Collapse
|
10
|
Martin-Gomez A, Eisenstecken T, Gompper G, Winkler RG. Hydrodynamics of polymers in an active bath. Phys Rev E 2020; 101:052612. [PMID: 32575238 DOI: 10.1103/physreve.101.052612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The conformational and dynamical properties of active polymers in solution are determined by the nature of the activity. Here, the behavior of polymers with self-propelled, active Brownian particle-type monomers differs qualitatively from that of polymers with monomers driven externally by colored-noise forces. We present simulation and theoretical results for polymers in solution in the presence of external active noise. In simulations, a semiflexible bead-spring chain is considered, in analytical calculations, a continuous linear wormlike chain. Activity is taken into account by independent monomer or site velocities, with orientations changing in a diffusive manner. In simulations, hydrodynamic interactions (HIs) are taken into account by the Rotne-Prager-Yamakawa tensor or by an implementation of the active polymer in the multiparticle-collision-dynamics approach for fluids. To arrive at an analytical solution, the preaveraged Oseen tensor is employed. The active process implies a dependence of the stationary-state properties on HIs via the polymer relaxation times. With increasing activity, HIs lead to an enhanced swelling of flexible polymers, and the conformational properties differ substantially from those of polymers with self-propelled monomers in the presence of HIs, or free-draining polymers. The polymer mean-square displacement is enhanced by HIs. Over a wide range of timescales, hydrodynamics leads to a subdiffusive regime of the site mean-square displacement for flexible active polymers, with an exponent of 5/7, larger than that of the Rouse (1/2) and Zimm (2/3) models of passive polymers.
Collapse
Affiliation(s)
- Aitor Martin-Gomez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
11
|
Jakobs MAH, Franze K, Zemel A. Mechanical Regulation of Neurite Polarization and Growth: A Computational Study. Biophys J 2020; 118:1914-1920. [PMID: 32229314 DOI: 10.1016/j.bpj.2020.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 01/14/2023] Open
Abstract
The densely packed microtubule (MT) array found in neuronal cell projections (neurites) serves two fundamental functions simultaneously: it provides a mechanically stable track for molecular motor-based transport and produces forces that drive neurite growth. The local pattern of MT polarity along the neurite shaft has been found to differ between axons and dendrites. In axons, the neurons' dominating long projections, roughly 90% of the MTs orient with their rapidly growing plus end away from the cell body, whereas in vertebrate dendrites, their orientations are locally mixed. Molecular motors are known to be responsible for cytoskeletal ordering and force generation, but their collective function in the dense MT cytoskeleton of neurites remains elusive. We here hypothesized that both the polarity pattern of MTs along the neurite shaft and the shaft's global extension are simultaneously driven by molecular motor forces and should thus be regulated by the mechanical load acting on the MT array as a whole. To investigate this, we simulated cylindrical bundles of MTs that are cross-linked and powered by molecular motors by iteratively solving a set of force-balance equations. The bundles were subjected to a fixed load arising from actively generated tension in the actomyosin cortex enveloping the MTs. The magnitude of the load and the level of motor-induced connectivity between the MTs have been varied systematically. With an increasing load and decreasing motor-induced connectivity between MTs, the bundles became wider in cross section and extended more slowly, and the local MT orientational order was reduced. These results reveal two, to our knowledge, novel mechanical factors that may underlie the distinctive development of the MT cytoskeleton in axons and dendrites: the cross-linking level of MTs by motors and the load acting on this cytoskeleton during growth.
Collapse
Affiliation(s)
- Maximilian A H Jakobs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Assaf Zemel
- Institute of Dental Sciences and Fritz Haber Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Cao X, Zhang B, Zhao N. Effective temperature scaled dynamics of a flexible polymer in an active bath. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1730992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiuli Cao
- College of Chemistry, Sichuan University, Chengdu, China
| | - Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Abstract
Brownian dynamics (BD) is a technique for carrying out computer simulations of physical systems that are driven by thermal fluctuations. Biological systems at the macromolecular and cellular level, while falling in the gap between well-established atomic-level models and continuum models, are especially suitable for such simulations. We present a brief history, examples of important biological processes that are driven by thermal motion, and those that have been profitably studied by BD. We also present some of the challenges facing developers of algorithms and software, especially in the attempt to simulate larger systems more accurately and for longer times.
Collapse
Affiliation(s)
- Gary A Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0340, USA.,Department of Pharmocology, University of California San Diego, La Jolla, CA 92093-0636, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0340, USA.,Department of Pharmocology, University of California San Diego, La Jolla, CA 92093-0636, USA
| |
Collapse
|
14
|
Foglino M, Locatelli E, Brackley CA, Michieletto D, Likos CN, Marenduzzo D. Non-equilibrium effects of molecular motors on polymers. SOFT MATTER 2019; 15:5995-6005. [PMID: 31292585 DOI: 10.1039/c9sm00273a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a generic coarse-grained model to describe molecular motors acting on polymer substrates, mimicking, for example, RNA polymerase on DNA or kinesin on microtubules. The polymer is modeled as a connected chain of beads; motors are represented as freely diffusing beads which, upon encountering the substrate, bind to it through a short-ranged attractive potential. When bound, motors and polymer beads experience an equal and opposite active force, directed tangential to the polymer; this leads to motion of the motors along the polymer contour. The inclusion of explicit motors differentiates our model from other recent active polymer models. We study, by means of Langevin dynamics simulations, the effect of the motor activity on both the conformational and dynamical properties of the substrate. We find that activity leads, in addition to the expected enhancement of polymer diffusion, to an effective reduction of its persistence length. We discover that this effective "softening" is a consequence of the emergence of double-folded branches, or hairpins, and that it can be tuned by changing the number of motors or the force they generate. Finally, we investigate the effect of the motors on the probability of knot formation. Counter-intuitively our simulations reveal that, even though at equilibrium a more flexible substrate would show an increased knotting probability, motor activity leads to a marked decrease in the occurrence of knotted conformations with respect to equilibrium.
Collapse
Affiliation(s)
- M Foglino
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| | | | | | | | | | | |
Collapse
|
15
|
Bächer C, Gekle S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys Rev E 2019; 99:062418. [PMID: 31330647 DOI: 10.1103/physreve.99.062418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Active gel theory has recently been very successful in describing biologically active materials such as actin filaments or moving bacteria in temporally fixed and simple geometries such as cubes or spheres. Here we develop a computational algorithm to compute the dynamic evolution of an arbitrarily shaped, deformable thin membrane of active material embedded in a three-dimensional flowing liquid. For this, our algorithm combines active gel theory with the classical theory of thin elastic shells. To compute the actual forces resulting from active stresses, we apply a parabolic fitting procedure to the triangulated membrane surface. Active forces are then dynamically coupled via an immersed-boundary method to the surrounding fluid whose dynamics can be solved by any standard, e.g., Lattice-Boltzmann, flow solver. We validate our algorithm using the Green's functions of Berthoumieux et al. [New J. Phys. 16, 065005 (2014)10.1088/1367-2630/16/6/065005] for an active cylindrical membrane subjected (i) to a locally increased active stress and (ii) to a homogeneous active stress. For the latter scenario, we predict in addition a nonaxisymmetric instability. We highlight the versatility of our method by analyzing the flow field inside an actively deforming cell embedded in external shear flow. Further applications may be cytoplasmic streaming or active membranes in blood flows.
Collapse
Affiliation(s)
- Christian Bächer
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| |
Collapse
|
16
|
Rickman J, Nédélec F, Surrey T. Effects of spatial dimensionality and steric interactions on microtubule-motor self-organization. Phys Biol 2019; 16:046004. [PMID: 31013252 PMCID: PMC7655122 DOI: 10.1088/1478-3975/ab0fb1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Active networks composed of filaments and motor proteins can self-organize into a
variety of architectures. Computer simulations in two or three spatial
dimensions and including or omitting steric interactions between filaments can
be used to model active networks. Here we examine how these modelling choices
affect the state space of network self-organization. We compare the networks
generated by different models of a system of dynamic microtubules and
microtubule-crosslinking motors. We find that a thin 3D model that includes
steric interactions between filaments is the most versatile, capturing a variety
of network states observed in recent experiments. In contrast, 2D models either
with or without steric interactions which prohibit microtubule crossings can
produce some, but not all, observed network states. Our results provide
guidelines for the most appropriate choice of model for the study of different
network types and elucidate mechanisms of active network organization.
Collapse
Affiliation(s)
- Jamie Rickman
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1 6BT, United Kingdom
| | | | | |
Collapse
|
17
|
Affiliation(s)
- S. Mahdiyeh Mousavi
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G. Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
18
|
Ravichandran A, Duman Ö, Hoore M, Saggiorato G, Vliegenthart GA, Auth T, Gompper G. Chronology of motor-mediated microtubule streaming. eLife 2019; 8:e39694. [PMID: 30601119 PMCID: PMC6338466 DOI: 10.7554/elife.39694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
We introduce a filament-based simulation model for coarse-grained, effective motor-mediated interaction between microtubule pairs to study the time-scales that compose cytoplasmic streaming. We characterise microtubule dynamics in two-dimensional systems by chronologically arranging five distinct processes of varying duration that make up streaming, from microtubule pairs to collective dynamics. The structures found were polarity sorted due to the propulsion of antialigned microtubules. This also gave rise to the formation of large polar-aligned domains, and streaming at the domain boundaries. Correlation functions, mean squared displacements, and velocity distributions reveal a cascade of processes ultimately leading to microtubule streaming and advection, spanning multiple microtubule lengths. The characteristic times for the processes extend over three orders of magnitude from fast single-microtubule processes to slow collective processes. Our approach can be used to directly test the importance of molecular components, such as motors and crosslinking proteins between microtubules, on the collective dynamics at cellular scale.
Collapse
Affiliation(s)
- Arvind Ravichandran
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Özer Duman
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Masoud Hoore
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Guglielmo Saggiorato
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Gerard A Vliegenthart
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| |
Collapse
|
19
|
Duman Ö, Isele-Holder RE, Elgeti J, Gompper G. Collective dynamics of self-propelled semiflexible filaments. SOFT MATTER 2018; 14:4483-4494. [PMID: 29808191 DOI: 10.1039/c8sm00282g] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The collective behavior of active semiflexible filaments is studied with a model of tangentially driven self-propelled worm-like chains. The combination of excluded-volume interactions and self-propulsion leads to several distinct dynamic phases as a function of bending rigidity, activity, and aspect ratio of individual filaments. We consider first the case of intermediate filament density. For high-aspect-ratio filaments, we identify a transition with increasing propulsion from a state of free-swimming filaments to a state of spiraled filaments with nearly frozen translational motion. For lower aspect ratios, this gas-of-spirals phase is suppressed with growing density due to filament collisions; instead, filaments form clusters similar to self-propelled rods. As activity increases, finite bending rigidity strongly effects the dynamics and phase behavior. Flexible filaments form small and transient clusters, while stiffer filaments organize into giant clusters, similarly to self-propelled rods, but with a reentrant phase behavior from giant to smaller clusters as activity becomes large enough to bend the filaments. For high filament densities, we identify a nearly frozen jamming state at low activities, a nematic laning state at intermediate activities, and an active-turbulence state at high activities. The latter state is characterized by a power-law decay of the energy spectrum as a function of wave number. The resulting phase diagrams encapsulate tunable non-equilibrium steady states that can be used in the organization of living matter.
Collapse
Affiliation(s)
- Özer Duman
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forchungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | | | | | | |
Collapse
|