1
|
Condezo GN, San Martín C. Maturation of Viruses. Subcell Biochem 2024; 105:503-531. [PMID: 39738956 DOI: 10.1007/978-3-031-65187-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity. During maturation, structural and physical changes prepare the viral particles for delivering their genome into cells at the right time and location. The virion must be stabilized for travel across harsh extracellular conditions, while enabling disassembly for genome exposure to replication and translation machineries. That is, maturation has to produce metastable particles. Common maturation strategies include structural reordering, controlled proteolysis, or posttranslational modifications. Here we outline the maturation process in representative members of the six realms proposed by the latest virus taxonomic classification.
Collapse
Affiliation(s)
- Gabriela N Condezo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Martín-González N, Gómez-González A, Hernando-Pérez M, Bauer M, Greber UF, San Martín C, de Pablo PJ. Adenovirus core protein V reinforces the capsid and enhances genome release from disrupted particles. SCIENCE ADVANCES 2023; 9:eade9910. [PMID: 37027464 PMCID: PMC10081844 DOI: 10.1126/sciadv.ade9910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Out of the three core proteins in human adenovirus, protein V is believed to connect the inner capsid surface to the outer genome layer. Here, we explored mechanical properties and in vitro disassembly of particles lacking protein V (Ad5-ΔV). Ad5-ΔV particles were softer and less brittle than the wild-type ones (Ad5-wt), but they were more prone to release pentons under mechanical fatigue. In Ad5-ΔV, core components did not readily diffuse out of partially disrupted capsids, and the core appeared more condensed than in Ad5-wt. These observations suggest that instead of condensing the genome, protein V antagonizes the condensing action of the other core proteins. Protein V provides mechanical reinforcement and facilitates genome release by keeping DNA connected to capsid fragments that detach during disruption. This scenario is in line with the location of protein V in the virion and its role in Ad5 cell entry.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departament of Condensed Matter Physics, Universidad Autónoma de Madrid and Institute of Condensed Matter Physics (IFIMAC), 28049 Madrid, Spain
| | - Alfonso Gómez-González
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Pedro J. de Pablo
- Departament of Condensed Matter Physics, Universidad Autónoma de Madrid and Institute of Condensed Matter Physics (IFIMAC), 28049 Madrid, Spain
| |
Collapse
|
3
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
4
|
Asor R, Khaykelson D, Ben-Nun-Shaul O, Levi-Kalisman Y, Oppenheim A, Raviv U. pH stability and disassembly mechanism of wild-type simian virus 40. SOFT MATTER 2020; 16:2803-2814. [PMID: 32104873 PMCID: PMC7189960 DOI: 10.1039/c9sm02436k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo-capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | | | | | | | | | | |
Collapse
|
5
|
Multiscale modelling and simulation of viruses. Curr Opin Struct Biol 2020; 61:146-152. [PMID: 31991326 DOI: 10.1016/j.sbi.2019.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
In recent years, advances in structural biology, integrative modelling, and simulation approaches have allowed us to gain unprecedented insights into viral structure and dynamics. In this article we survey recent studies utilizing this wealth of structural information to build computational models of partial or complete viruses and to elucidate mechanisms of viral function. Additionally, the close interplay of viral pathogens with host factors - such as cellular and intracellular membranes, receptors, antibodies, and other host proteins - makes accurate models of viral interactions and dynamics essential. As viruses continue to pose severe challenges in prevention and treatment, enhancing our mechanistic understanding of viral infection is vital to enable the development of novel therapeutic strategies.
Collapse
|
6
|
Martín-González N, Hernando-Pérez M, Condezo GN, Pérez-Illana M, Šiber A, Reguera D, Ostapchuk P, Hearing P, San Martín C, de Pablo PJ. Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 2019; 47:9231-9242. [PMID: 31396624 PMCID: PMC6755088 DOI: 10.1093/nar/gkz687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
Some viruses package dsDNA together with large amounts of positively charged proteins, thought to help condense the genome inside the capsid with no evidence. Further, this role is not clear because these viruses have typically lower packing fractions than viruses encapsidating naked dsDNA. In addition, it has recently been shown that the major adenovirus condensing protein (polypeptide VII) is dispensable for genome encapsidation. Here, we study the morphology and mechanics of adenovirus particles with (Ad5-wt) and without (Ad5-VII-) protein VII. Ad5-VII- particles are stiffer than Ad5-wt, but DNA-counterions revert this difference, indicating that VII screens repulsive DNA-DNA interactions. Consequently, its absence results in increased internal pressure. The core is slightly more ordered in the absence of VII and diffuses faster out of Ad5-VII– than Ad5-wt fractured particles. In Ad5-wt unpacked cores, dsDNA associates in bundles interspersed with VII-DNA clusters. These results indicate that protein VII condenses the adenovirus genome by combining direct clustering and promotion of bridging by other core proteins. This condensation modulates the virion internal pressure and DNA release from disrupted particles, which could be crucial to keep the genome protected inside the semi-disrupted capsid while traveling to the nuclear pore.
Collapse
Affiliation(s)
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | - David Reguera
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Pedro J de Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid 28049, Spain.,Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|