1
|
Kramer K, Sari M, Schulze K, Flegel H, Stehr M, Mey I, Janshoff A, Steinem C. From LUVs to GUVs─How to Cover Micrometer-Sized Pores with Membranes. J Phys Chem B 2022; 126:8233-8244. [PMID: 36210780 DOI: 10.1021/acs.jpcb.2c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pore-spanning membranes (PSMs) are a versatile tool to investigate membrane-confined processes in a bottom-up approach. Pore sizes in the micrometer range are most suited to visualize PSMs using fluorescence microscopy. However, the preparation of these PSMs relies on the spreading of giant unilamellar vesicles (GUVs). GUV production faces several limitations. Thus, alternative ways to generate PSMs starting from large or small unilamellar vesicles that are more reproducibly prepared are highly desirable. Here we describe a method to produce PSMs obtained from large unilamellar vesicles, making use of droplet-stabilized GUVs generated in a microfluidic device. We analyzed the lipid diffusion in the free-standing and supported parts of the PSMs using z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching experiments in combination with finite element simulations. Employing atomic force indentation experiments, we also investigated the mechanical properties of the PSMs. Both lipid diffusion constants and lateral membrane tension were compared to those obtained on PSMs derived from electroformed GUVs, which are known to be solvent- and detergent-free, under otherwise identical conditions. Our results demonstrate that the lipid diffusion, as well as the mechanical properties of the resulting PSMs, is almost unaffected by the GUV formation procedure but depends on the chosen substrate functionalization. With the new method in hand, we were able to reconstitute the syntaxin-1A transmembrane domain in microfluidic GUVs and PSMs, which was visualized by fluorescence microscopy.
Collapse
Affiliation(s)
- Kristina Kramer
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Merve Sari
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Kathrin Schulze
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Hendrik Flegel
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Miriam Stehr
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077Göttingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077Göttingen, Germany
| |
Collapse
|
2
|
Viscoelastic properties of epithelial cells. Biochem Soc Trans 2021; 49:2687-2695. [PMID: 34854895 DOI: 10.1042/bst20210476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Epithelial cells form tight barriers that line both the outer and inner surfaces of organs and cavities and therefore face diverse environmental challenges. The response to these challenges relies on the cells' dynamic viscoelastic properties, playing a pivotal role in many biological processes such as adhesion, growth, differentiation, and motility. Therefore, the cells usually adapt their viscoelastic properties to mirror the environment that determines their fate and vitality. Albeit not a high-throughput method, atomic force microscopy is still among the dominating methods to study the mechanical properties of adherent cells since it offers a broad range of forces from Piconewtons to Micronewtons at biologically significant time scales. Here, some recent work of deformation studies on epithelial cells is reviewed with a focus on viscoelastic models suitable to describe force cycle measurements congruent with the architecture of the actin cytoskeleton. The prominent role of the cortex in the cell's response to external forces is discussed also in the context of isolated cortex extracts on porous surfaces.
Collapse
|
3
|
Janshoff A. Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells. BIOPHYSICAL REPORTS 2021; 1:100024. [PMID: 36425463 PMCID: PMC9680774 DOI: 10.1016/j.bpr.2021.100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 06/16/2023]
Abstract
The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.
Collapse
Affiliation(s)
- Andreas Janshoff
- Department of Chemistry, Institute of Physical Chemistry, Göttingen
| |
Collapse
|
4
|
Zamprogno P, Thoma G, Cencen V, Ferrari D, Putz B, Michler J, Fantner GE, Guenat OT. Mechanical Properties of Soft Biological Membranes for Organ-on-a-Chip Assessed by Bulge Test and AFM. ACS Biomater Sci Eng 2021; 7:2990-2997. [PMID: 33651947 DOI: 10.1021/acsbiomaterials.0c00515] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Advanced in vitro models called "organ-on-a-chip" can mimic the specific cellular environment found in various tissues. Many of these models include a thin, sometimes flexible, membrane aimed at mimicking the extracellular matrix (ECM) scaffold of in vivo barriers. These membranes are often made of polydimethylsiloxane (PDMS), a silicone rubber that poorly mimics the chemical and physical properties of the basal membrane. However, the ECM and its mechanical properties play a key role in the homeostasis of a tissue. Here, we report about biological membranes with a composition and mechanical properties similar to those found in vivo. Two types of collagen-elastin (CE) membranes were produced: vitrified and nonvitrified (called "hydrogel membrane"). Their mechanical properties were characterized using the bulge test method. The results were compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young's modulus of soft materials at the nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The Young's modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces.
Collapse
Affiliation(s)
- Pauline Zamprogno
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland
| | - Giuditta Thoma
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland
| | - Veronika Cencen
- Laboratory for Bio- and Nano- Instrumentation, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland
| | - Barbara Putz
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Thun 3602, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Thun 3602, Switzerland
| | - Georg E Fantner
- Laboratory for Bio- and Nano- Instrumentation, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland.,Department of Pulmonary Medicine, University Hospital of Bern, Bern 3008, Switzerland.,Department of General Thoracic Surgery, University Hospital of Bern, Bern 3008, Switzerland
| |
Collapse
|
5
|
Hubrich H, Mey IP, Brückner BR, Mühlenbrock P, Nehls S, Grabenhorst L, Oswald T, Steinem C, Janshoff A. Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments. NANO LETTERS 2020; 20:6329-6335. [PMID: 32786944 DOI: 10.1021/acs.nanolett.0c01769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell cortices are responsible for the resilience and morphological dynamics of cells. Measuring their mechanical properties is impeded by contributions from other filament types, organelles, and the crowded cytoplasm. We established a versatile concept for the precise assessment of cortical viscoelasticity based on force cycle experiments paired with continuum mechanics. Apical cell membranes of confluent MDCK II cells were deposited on porous substrates and locally deformed. Force cycles could be described with a time-dependent area compressibility modulus obeying the same power law as employed for whole cells. The reduced fluidity of apical cell membranes compared to living cells could partially be restored by reactivating myosin motors. A comparison with artificial minimal actin cortices (MACs) reveals lower stiffness and higher fluidity attributed to missing cross-links in MACs.
Collapse
Affiliation(s)
- Hanna Hubrich
- Department of Chemistry, Institute of Physical Chemistry, Göttingen 37077, Germany
| | - Ingo P Mey
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Göttingen 37077, Germany
| | - Bastian R Brückner
- Department of Chemistry, Institute of Physical Chemistry, Göttingen 37077, Germany
| | - Peter Mühlenbrock
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Göttingen 37077, Germany
| | - Stefan Nehls
- Department of Chemistry, Institute of Physical Chemistry, Göttingen 37077, Germany
| | - Lennart Grabenhorst
- Department of Chemistry, Institute of Physical Chemistry, Göttingen 37077, Germany
| | - Tabea Oswald
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Göttingen 37077, Germany
| | - Claudia Steinem
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Göttingen 37077, Germany
| | - Andreas Janshoff
- Department of Chemistry, Institute of Physical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
6
|
Sibold J, Tewaag VE, Vagedes T, Mey I, Steinem C. Phase separation in pore-spanning membranes induced by differences in surface adhesion. Phys Chem Chem Phys 2020; 22:9308-9315. [DOI: 10.1039/d0cp00335b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A porous scaffold providing different adhesion energies alters the behaviour of coexisting phases in lipid membranes considerably.
Collapse
Affiliation(s)
- Jeremias Sibold
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Vera E. Tewaag
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Thomas Vagedes
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry
- University of Göttingen
- 37077 Göttingen
- Germany
- Max Planck Institute for Dynamics and Self-Organization
| |
Collapse
|
7
|
Stiffness of MDCK II Cells Depends on Confluency and Cell Size. Biophys J 2019; 116:2204-2211. [PMID: 31126583 DOI: 10.1016/j.bpj.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mechanical phenotyping of adherent cells has become a serious tool in cell biology to understand how cells respond to their environment and eventually to identify disease patterns such as the malignancy of cancer cells. In the steady state, homeostasis is of pivotal importance, and cells strive to maintain their internal stresses even in challenging environments and in response to external chemical and mechanical stimuli. However, a major problem exists in determining mechanical properties because many techniques, such as atomic force microscopy, that assess these properties of adherent cells locally can only address a limited number of cells and provide elastic moduli that vary substantially from cell to cell. The origin of this spread in stiffness values is largely unknown and might limit the significance of measurements. Possible reasons for the disparity are variations in cell shape and size, as well as biological reasons such as the cell cycle or polarization state of the cell. Here, we show that stiffness of adherent epithelial cells rises with increasing projected apical cell area in a nonlinear fashion. This size stiffening not only occurs as a consequence of varying cell-seeding densities, it can also be observed within a small area of a particular cell culture. Experiments with single adherent cells attached to defined areas via microcontact printing show that size stiffening is limited to cells of a confluent monolayer. This leads to the conclusion that cells possibly regulate their size distribution through cortical stress, which is enhanced in larger cells and reduced in smaller cells.
Collapse
|