1
|
Devi A, Neupane K, Jung H, Neuman KC, Woodside MT. Nonlinear effects in optical trapping of titanium dioxide and diamond nanoparticles. Biophys J 2023; 122:3439-3446. [PMID: 37496270 PMCID: PMC10502464 DOI: 10.1016/j.bpj.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO2) in a single-beam gradient trap. Calculating theoretical expectations for the trapping stiffness of these beads, we found good agreement with measured values. Trap stiffness was significantly higher for TiO2 beads, owing to notable enhancement from nonlinear optical effects, not previously observed for continuous-wave trapping. Trap stiffness was over 6-fold higher for TiO2 beads than polystyrene beads of similar size at 70 mW laser power. These results suggest that diamond and TiO2 nanobeads can be used to improve time resolution in optical tweezers measurements.
Collapse
Affiliation(s)
- Anita Devi
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Haksung Jung
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Incaviglia I, Herzog S, Fläschner G, Strohmeyer N, Tosoratti E, Müller DJ. Tailoring the Sensitivity of Microcantilevers To Monitor the Mass of Single Adherent Living Cells. NANO LETTERS 2023; 23:588-596. [PMID: 36607826 PMCID: PMC9881155 DOI: 10.1021/acs.nanolett.2c04198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Microcantilevers are widely employed as mass sensors for biological samples, from single molecules to single cells. However, the accurate mass quantification of living adherent cells is impaired by the microcantilever's mass sensitivity and cell migration, both of which can lead to detect masses mismatching by ≫50%. Here, we design photothermally actuated microcantilevers to optimize the accuracy of cell mass measurements. By reducing the inertial mass of the microcantilever using a focused ion beam, we considerably increase its mass sensitivity, which is validated by finite element analysis and experimentally by gelatin microbeads. The improved microcantilevers allow us to instantly monitor at much improved accuracy the mass of both living HeLa cells and mouse fibroblasts adhering to different substrates. Finally, we show that the improved cantilever design favorably restricts cell migration and thus reduces the large measurement errors associated with this effect.
Collapse
Affiliation(s)
- Ilaria Incaviglia
- Department
of Biosystems Science and Engineering, Swiss
Federal Institute of Technology Zurich (ETH), Basel4058, Switzerland
| | - Sophie Herzog
- Department
of Biosystems Science and Engineering, Swiss
Federal Institute of Technology Zurich (ETH), Basel4058, Switzerland
| | - Gotthold Fläschner
- Department
of Biosystems Science and Engineering, Swiss
Federal Institute of Technology Zurich (ETH), Basel4058, Switzerland
- Nanosurf
AG, Liestal4410, Switzerland
| | - Nico Strohmeyer
- Department
of Biosystems Science and Engineering, Swiss
Federal Institute of Technology Zurich (ETH), Basel4058, Switzerland
| | - Enrico Tosoratti
- Department
of Mechanical and Process Engineering, Swiss
Federal Institute of Technology Zurich (ETH), Zürich8092, Switzerland
| | - Daniel J. Müller
- Department
of Biosystems Science and Engineering, Swiss
Federal Institute of Technology Zurich (ETH), Basel4058, Switzerland
| |
Collapse
|
3
|
Lei H, Zhang J, Li Y, Wang X, Qin M, Wang W, Cao Y. Histidine-Specific Bioconjugation for Single-Molecule Force Spectroscopy. ACS NANO 2022; 16:15440-15449. [PMID: 35980082 DOI: 10.1021/acsnano.2c07298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy (AFM) based single-molecule force spectroscopy (SMFS) is a powerful tool to study the mechanical properties of proteins. In these experiments, site-specific immobilization of proteins is critical, as the tether determines the direction and amplitude of forces applied to the protein of interest. However, existing methods are mainly based on thiol chemistry or specific protein tags, which cannot meet the need of many challenging experiments. Here, we developed a histidine-specific phosphorylation strategy to covalently anchor proteins to an AFM cantilever tip or the substrate via their histidine tag or surface-exposed histidine residues. The formed covalent linkage was mechanically stable with rupture forces of over 1.3 nN. This protein immobilization method considerably improved the pickup rate and data quality of SMFS experiments. We further demonstrated the use of this method to explore the pulling-direction-dependent mechanical stability of green fluorescent protein and the unfolding of the membrane protein archaerhodopsin-3.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Road, Nanjing 210023, People's Republic of China
| | - Junsheng Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology 219 Ningliu Road, Nanjing, 210044, People's Republic of China
| | - Xin Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University 22 Hankou Road, Nanjing 210093, People's Republic of China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 163 Xianlin Road, Nanjing 210023, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, People's Republic of China
| |
Collapse
|
4
|
Abstract
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Min Ju Shon
- Department of Physics and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
5
|
Su H, Brockman JM, Duan Y, Sen N, Chhabra H, Bazrafshan A, Blanchard AT, Meyer T, Andrews B, Doye JPK, Ke Y, Dyer RB, Salaita K. Massively Parallelized Molecular Force Manipulation with On-Demand Thermal and Optical Control. J Am Chem Soc 2021; 143:19466-19473. [PMID: 34762807 DOI: 10.1021/jacs.1c08796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
In single-molecule force spectroscopy (SMFS), a tethered molecule is stretched using a specialized instrument to study how macromolecules extend under force. One problem in SMFS is the serial and slow nature of the measurements, performed one molecule at a time. To address this long-standing challenge, we report on the origami polymer force clamp (OPFC) which enables parallelized manipulation of the mechanical forces experienced by molecules without the need for dedicated SMFS instruments or surface tethering. The OPFC positions target molecules between a rigid nanoscale DNA origami beam and a responsive polymer particle that shrinks on demand. As a proof-of-concept, we record the steady state and time-resolved mechanical unfolding dynamics of DNA hairpins using the fluorescence signal from ensembles of molecules and confirm our conclusion using modeling.
Collapse
Affiliation(s)
- Hanquan Su
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Navoneel Sen
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Hemani Chhabra
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Travis Meyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Brooke Andrews
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Yonggang Ke
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Petrosyan R, Narayan A, Woodside MT. Single-Molecule Force Spectroscopy of Protein Folding. J Mol Biol 2021; 433:167207. [PMID: 34418422 DOI: 10.1016/j.jmb.2021.167207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
7
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
8
|
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
9
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
10
|
Energy landscapes of fast-folding proteins pushing the limits of atomic force microscope (AFM) pulling. Proc Natl Acad Sci U S A 2021; 118:2102946118. [PMID: 33893176 DOI: 10.1073/pnas.2102946118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
|
11
|
Rodriguez-Ramos J, Rico F. Determination of calibration parameters of cantilevers of arbitrary shape by finite element analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:045001. [PMID: 34243426 DOI: 10.1063/5.0036263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/03/2020] [Accepted: 03/14/2021] [Indexed: 06/13/2023]
Abstract
The use of atomic force microscopy in nanomechanical measurements requires accurate calibration of the cantilever's spring constant (kc) and the optical lever sensitivity (OLS). The thermal method, based on the cantilever's thermal fluctuations in fluids, allows estimation of kc in a fast, non-invasive mode. However, differences in the cantilever geometry and mounting angle require the knowledge of three correction factors to get a good estimation of kc: the contribution of the oscillation mode to the total amplitude, the shape difference between the free and end-loaded configurations, and the tilt of the cantilever with respect to the measured surface. While the correction factors for traditional rectangular and V-shaped cantilever geometries have been reported, they must be determined for cantilevers with non-traditional geometries and large tips. Here, we develop a method based on finite element analysis to estimate the correction factors of cantilevers with arbitrary geometry and tip dimensions. The method relies on the numerical computation of the effective cantilever mass. The use of the correction factor for rectangular geometries in our model cantilever (PFQNM-LC) will lead to values underestimated by 16%. In contrast, experiments using pre-calibrated cantilevers revealed a maximum uncertainty below 5% in the estimation of the OLS, verifying our approach.
Collapse
Affiliation(s)
| | - Felix Rico
- Aix-Marseille University, INSERM, CNRS, LAI, 13009 Marseille, France
| |
Collapse
|
12
|
Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations. Proc Natl Acad Sci U S A 2021; 118:2015728118. [PMID: 33723041 DOI: 10.1073/pnas.2015728118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Single-molecule force spectroscopy is a powerful tool for studying protein folding. Over the last decade, a key question has emerged: how are changes in intrinsic biomolecular dynamics altered by attachment to μm-scale force probes via flexible linkers? Here, we studied the folding/unfolding of α3D using atomic force microscopy (AFM)-based force spectroscopy. α3D offers an unusual opportunity as a prior single-molecule fluorescence resonance energy transfer (smFRET) study showed α3D's configurational diffusion constant within the context of Kramers theory varies with pH. The resulting pH dependence provides a test for AFM-based force spectroscopy's ability to track intrinsic changes in protein folding dynamics. Experimentally, however, α3D is challenging. It unfolds at low force (<15 pN) and exhibits fast-folding kinetics. We therefore used focused ion beam-modified cantilevers that combine exceptional force precision, stability, and temporal resolution to detect state occupancies as brief as 1 ms. Notably, equilibrium and nonequilibrium force spectroscopy data recapitulated the pH dependence measured using smFRET, despite differences in destabilization mechanism. We reconstructed a one-dimensional free-energy landscape from dynamic data via an inverse Weierstrass transform. At both neutral and low pH, the resulting constant-force landscapes showed minimal differences (∼0.2 to 0.5 k B T) in transition state height. These landscapes were essentially equal to the predicted entropic barrier and symmetric. In contrast, force-dependent rates showed that the distance to the unfolding transition state increased as pH decreased and thereby contributed to the accelerated kinetics at low pH. More broadly, this precise characterization of a fast-folding, mechanically labile protein enables future AFM-based studies of subtle transitions in mechanoresponsive proteins.
Collapse
|
13
|
Higgins CI, Brown TE, Killgore JP. Digital light processing in a hybrid atomic force microscope: In Situ, nanoscale characterization of the printing process. ADDITIVE MANUFACTURING 2021; 38:10.1016/j.addma.2020.101744. [PMID: 34268068 PMCID: PMC8276139 DOI: 10.1016/j.addma.2020.101744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/14/2023]
Abstract
Stereolithography (SLA) and digital light processing (DLP) are powerful additive manufacturing techniques that address a wide range of applications including regenerative medicine, prototyping, and manufacturing. Unfortunately, these printing processes introduce micrometer-scale anisotropic inhomogeneities due to the resin absorptivity, diffusivity, reaction kinetics, and swelling during the requisite photoexposure. Previously, it has not been possible to characterize high-resolution mechanical heterogeneity as it develops during the printing process. By combining DLP 3D printing with atomic force microscopy in a hybrid instrument, heterogeneity of a single, in situ printed voxel is characterized. Here, we describe the instrument and demonstrate three modalities for characterizing voxels during and after printing. Sensing Modality I maps the mechanical properties of just-printed, resin-immersed voxels, providing the framework to study the relationships between voxel sizes, print exposure parameters, and voxel-voxel interactions. Modality II captures the nanometric, in situ working curve and is the first demonstration of in situ cure depth measurement. Modality III dynamically senses local rheological changes in the resin by monitoring the viscoelastic damping coefficient of the resin during patterning. Overall, this instrument equips researchers with a tool to develop rich insight into resin development, process optimization, and fundamental printing limits.
Collapse
|
14
|
Ding Y, Apostolidou D, Marszalek P. Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc. Int J Mol Sci 2020; 22:E55. [PMID: 33374567 PMCID: PMC7801952 DOI: 10.3390/ijms22010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022] Open
Abstract
NanoLuc is a bioluminescent protein recently engineered for applications in molecular imaging and cellular reporter assays. Compared to other bioluminescent proteins used for these applications, like Firefly Luciferase and Renilla Luciferase, it is ~150 times brighter, more thermally stable, and smaller. Yet, no information is known with regards to its mechanical properties, which could introduce a new set of applications for this unique protein, such as a novel biomaterial or as a substrate for protein activity/refolding assays. Here, we generated a synthetic NanoLuc derivative protein that consists of three connected NanoLuc proteins flanked by two human titin I91 domains on each side and present our mechanical studies at the single molecule level by performing Single Molecule Force Spectroscopy (SMFS) measurements. Our results show each NanoLuc repeat in the derivative behaves as a single domain protein, with a single unfolding event occurring on average when approximately 72 pN is applied to the protein. Additionally, we performed cyclic measurements, where the forces applied to a single protein were cyclically raised then lowered to allow the protein the opportunity to refold: we observed the protein was able to refold to its correct structure after mechanical denaturation only 16.9% of the time, while another 26.9% of the time there was evidence of protein misfolding to a potentially non-functional conformation. These results show that NanoLuc is a mechanically moderately weak protein that is unable to robustly refold itself correctly when stretch-denatured, which makes it an attractive model for future protein folding and misfolding studies.
Collapse
Affiliation(s)
- Yue Ding
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; (Y.D.); (D.A.)
- Department of Engineering Mechanics, SVL, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; (Y.D.); (D.A.)
| | - Piotr Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; (Y.D.); (D.A.)
| |
Collapse
|
15
|
Zhang P, Wang D, Yang W, Marszalek PE. Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway. Biophys J 2020; 119:2251-2261. [PMID: 33130123 DOI: 10.1016/j.bpj.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Although the folding of single-domain proteins is well characterized theoretically and experimentally, the folding of large multidomain proteins is less well known. Firefly luciferase, a 550 residue three-domain protein, has been commonly used as a substrate to study chaperone reactions and as a model system for the study of folding of long polypeptide chains, including related phenomena such as cotranslational folding. Despite being characterized by various experimental techniques, the atomic-level contributions of various secondary structures of luciferase to its fold's mechanical stability remain unknown. Here, we developed a piecewise approach for all-atom steered molecular dynamics simulations to examine specific secondary structures that resist mechanical unfolding while minimizing the amount of computational resources required by the large water box of standard all-atom steered molecular dynamics simulations. We validated the robustness of this approach with a small NI3C protein and used our approach to elucidate the specific secondary structures that provide the largest contributions to luciferase mechanostability. In doing so, we show that piecewise all-atom steered molecular dynamics simulations can provide novel atomic resolution details regarding mechanostability and can serve as a platform for novel mutagenesis studies as well as a point for comparison with high-resolution force spectroscopy experiments.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Chemistry, Duke University, Durham, North Carolina
| | - David Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina.
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
16
|
Marszalek PE, Oberhauser AF. Meeting report - NSF-sponsored workshop 'Progress and Prospects of Single-Molecule Force Spectroscopy in Biological and Chemical Sciences'. J Cell Sci 2020; 133:jcs251421. [PMID: 32817164 PMCID: PMC10679350 DOI: 10.1242/jcs.251421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2023] Open
Abstract
The goals of the workshop organized by Piotr Marszalek and Andres Oberhauser that took place between 29 August and 1 September 2019 at Duke University were to bring together leading experts and junior researchers to review past accomplishments, recent advances and limitations in the single-molecule force spectroscopy field, which examines nanomechanical forces in diverse biological processes and pathologies. Talks were organized into four sessions, and two in-depth roundtable discussion sessions were held.
Collapse
Affiliation(s)
- Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
17
|
Yu H, Jacobson DR, Luo H, Perkins TT. Quantifying the Native Energetics Stabilizing Bacteriorhodopsin by Single-Molecule Force Spectroscopy. PHYSICAL REVIEW LETTERS 2020; 125:068102. [PMID: 32845671 DOI: 10.1103/physrevlett.125.068102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
We quantified the equilibrium (un)folding free energy ΔG_{0} of an eight-amino-acid region starting from the fully folded state of the model membrane-protein bacteriorhodopsin using single-molecule force spectroscopy. Analysis of equilibrium and nonequilibrium data yielded consistent, high-precision determinations of ΔG_{0} via multiple techniques (force-dependent kinetics, Crooks fluctuation theorem, and inverse Boltzmann analysis). We also deduced the full 1D projection of the free-energy landscape in this region. Importantly, ΔG_{0} was determined in bacteriorhodopsin's native bilayer, an advance over traditional results obtained by chemical denaturation in nonphysiological detergent micelles.
Collapse
Affiliation(s)
- Hao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Hao Luo
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
19
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
20
|
Nash MA. Zig Zag AFM Protocol Reveals New Intermediate Folding States of Bacteriorhodopsin. Biophys J 2019; 118:538-540. [PMID: 32023441 DOI: 10.1016/j.bpj.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
21
|
Jacobson DR, Uyetake L, Perkins TT. Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp. Biophys J 2019; 118:667-675. [PMID: 31882249 DOI: 10.1016/j.bpj.2019.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/15/2023] Open
Abstract
Precise quantification of the energetics and interactions that stabilize membrane proteins in a lipid bilayer is a long-sought goal. Toward this end, atomic force microscopy has been used to unfold individual membrane proteins embedded in their native lipid bilayer, typically by retracting the cantilever at a constant velocity. Recently, unfolding intermediates separated by as few as two amino acids were detected using focused-ion-beam-modified ultrashort cantilevers. However, unambiguously discriminating between such closely spaced states remains challenging, in part because any individual unfolding trajectory only occupies a subset of the total number of intermediates. Moreover, structural assignment of these intermediates via worm-like-chain analysis is hindered by brief dwell times compounded with thermal and instrumental noise. To overcome these issues, we moved the cantilever in a sawtooth pattern of 6-12 nm, offset by 0.25-1 nm per cycle, generating a "zigzag" force ramp of alternating positive and negative loading rates. We applied this protocol to the model membrane protein bacteriorhodopsin (bR). In contrast to conventional studies that extract bR's photoactive retinal along with the first transmembrane helix, we unfolded bR in the presence of its retinal. To do so, we introduced a previously developed enzymatic-cleavage site between helices E and F and pulled from the top of the E helix using a site-specific, covalent attachment. The resulting zigzag unfolding trajectories occupied 40% more states per trajectory and occupied those states for longer times than traditional constant-velocity records. In total, we identified 31 intermediates during the unfolding of five helices of EF-cleaved bR. These included a previously reported, mechanically robust intermediate located between helices C and B that, with our enhanced resolution, is now shown to be two distinct states separated by three amino acids. Interestingly, another intermediate directly interacted with the retinal, an interaction confirmed by removing the retinal.
Collapse
Affiliation(s)
- David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado
| | - Lyle Uyetake
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
22
|
Li Y, Cao Y. The molecular mechanisms underlying mussel adhesion. NANOSCALE ADVANCES 2019; 1:4246-4257. [PMID: 36134404 PMCID: PMC9418609 DOI: 10.1039/c9na00582j] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 06/12/2023]
Abstract
Marine mussels are able to firmly affix on various wet surfaces by the overproduction of special mussel foot proteins (mfps). Abundant fundamental studies have been conducted to understand the molecular basis of mussel adhesion, where the catecholic amino acid, l-3,4-dihydroxyphenylalanine (DOPA) has been found to play the major role. These studies continue to inspire the engineering of novel adhesives and coatings with improved underwater performances. Despite the fact that the recent advances of adhesives and coatings inspired by mussel adhesive proteins have been intensively reviewed in literature, the fundamental biochemical and biophysical studies on the origin of the strong and versatile wet adhesion have not been fully covered. In this review, we show how the force measurements at the molecular level by surface force apparatus (SFA) and single molecule atomic force microscopy (AFM) can be used to reveal the direct link between DOPA and the wet adhesion strength of mussel proteins. We highlight a few important technical details that are critical to the successful experimental design. We also summarize many new insights going beyond DOPA adhesion, such as the surface environment and protein sequence dependent synergistic and cooperative binding. We also provide a perspective on a few uncharted but outstanding questions for future studies. A comprehensive understanding on mussel adhesion will be beneficial to the design of novel synthetic wet adhesives for various biomedical applications.
Collapse
Affiliation(s)
- Yiran Li
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
| | - Yi Cao
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210093 China
| |
Collapse
|
23
|
High-speed force spectroscopy: microsecond force measurements using ultrashort cantilevers. Biophys Rev 2019; 11:689-699. [PMID: 31588961 PMCID: PMC6815269 DOI: 10.1007/s12551-019-00585-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022] Open
Abstract
Complete understanding of the role of mechanical forces in biological processes requires knowledge of the mechanical properties of individual proteins and living cells. Moreover, the dynamic response of biological systems at the nano- and microscales span over several orders of magnitude in time, from sub-microseconds to several minutes. Thus, access to force measurements over a wide range of length and time scales is required. High-speed atomic force microscopy (HS-AFM) using ultrashort cantilevers has emerged as a tool to study the dynamics of biomolecules and cells at video rates. The adaptation of HS-AFM to perform high-speed force spectroscopy (HS-FS) allows probing protein unfolding and receptor/ligand unbinding up to the velocity of molecular dynamics (MD) simulations with sub-microsecond time resolution. Moreover, application of HS-FS on living cells allows probing the viscoelastic response at short time scales providing deep understanding of cytoskeleton dynamics. In this mini-review, we assess the principles and recent developments and applications of HS-FS using ultrashort cantilevers to probe molecular and cellular mechanics.
Collapse
|
24
|
Hoffer NQ, Woodside MT. Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr Opin Chem Biol 2019; 53:68-74. [PMID: 31479831 DOI: 10.1016/j.cbpa.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2019] [Revised: 07/08/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Transition paths comprise those parts of a folding trajectory where the molecule passes through the high-energy transition states separating folded and unfolded conformations. The transition states determine the folding kinetics and mechanism but are difficult to observe because of their brief duration. Single-molecule experiments have in recent years begun to characterize transition paths in folding reactions, allowing the microscopic conformational dynamics that occur as a molecule traverses the energy barriers to be probed directly. Here we review single-molecule fluorescence and force spectroscopy measurements of transition-path properties, including the time taken to traverse the paths, the local velocity along them, the path shapes, and the variability within these measurements reflecting differences between individual barrier crossings. We discuss how these measurements have been related to theories of folding as diffusion over an energy landscape to deduce properties such as the diffusion coefficient, and how they are being combined with simulations to obtain enhanced atomistic understanding of folding. The richly detailed information available from transition path measurements holds great promise for improved understanding of microscopic mechanisms in folding.
Collapse
Affiliation(s)
- Noel Q Hoffer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
25
|
Marszalek PE. Warhammers for Peaceful Times. Biophys J 2019; 114:1-2. [PMID: 29320677 DOI: 10.1016/j.bpj.2017.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022] Open
Abstract
The Perkins group has recently developed a number of improved atomic force microscopy cantilevers using the focused ion beam technology. They compared the performance of these cantilevers in "real-life" biophysical single-molecule force spectroscopy measurements on protein unfolding, and the results of this comparison are reported in this issue of Biophysical Journal.
Collapse
Affiliation(s)
- Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
26
|
Walder R, Van Patten WJ, Ritchie DB, Montange RK, Miller TW, Woodside MT, Perkins TT. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy. NANO LETTERS 2018; 18:6318-6325. [PMID: 30234311 DOI: 10.1021/acs.nanolett.8b02597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
The folding of RNA into a wide range of structures is essential for its diverse biological functions from enzymatic catalysis to ligand binding and gene regulation. The unfolding and refolding of individual RNA molecules can be probed by single-molecule force spectroscopy (SMFS), enabling detailed characterization of the conformational dynamics of the molecule as well as the free-energy landscape underlying folding. Historically, high-precision SMFS studies of RNA have been limited to custom-built optical traps. Although commercial atomic force microscopes (AFMs) are widely deployed and offer significant advantages in ease-of-use over custom-built optical traps, traditional AFM-based SMFS lacks the sensitivity and stability to characterize individual RNA molecules precisely. Here, we developed a high-precision SMFS assay to study RNA folding using a commercial AFM and applied it to characterize a small RNA hairpin from HIV that plays a key role in stimulating programmed ribosomal frameshifting. We achieved rapid data acquisition in a dynamic assay, unfolding and then refolding the same individual hairpin more than 1,100 times in 15 min. In comparison to measurements using optical traps, our AFM-based assay featured a stiffer force probe and a less compliant construct, providing a complementary measurement regime that dramatically accelerated equilibrium folding dynamics. Not only did kinetic analysis of equilibrium trajectories of the HIV RNA hairpin yield the traditional parameters used to characterize folding by SMFS (zero-force rate constants and distances to the transition state), but we also reconstructed the full 1D projection of the folding free-energy landscape comparable to state-of-the-art studies using dual-beam optical traps, a first for this RNA hairpin and AFM studies of nucleic acids in general. Looking forward, we anticipate that the ease-of-use of our high-precision assay implemented on a commercial AFM will accelerate studying folding of diverse nucleic acid structures.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Dustin B Ritchie
- Department of Physics , University of Alberta , Edmonton AB T6G 2E1 , Canada
| | - Rebecca K Montange
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Ty W Miller
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Michael T Woodside
- Department of Physics , University of Alberta , Edmonton AB T6G 2E1 , Canada
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
27
|
Heenan PR, Perkins TT. FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm. Biophys J 2018; 115:757-762. [PMID: 30122292 DOI: 10.1016/j.bpj.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022] Open
Abstract
Single-molecule force spectroscopy (SMFS) provides a powerful tool to explore the dynamics and energetics of individual proteins, protein-ligand interactions, and nucleic acid structures. In the canonical assay, a force probe is retracted at constant velocity to induce a mechanical unfolding/unbinding event. Next, two energy landscape parameters, the zero-force dissociation rate constant (ko) and the distance to the transition state (Δx‡), are deduced by analyzing the most probable rupture force as a function of the loading rate, the rate of change in force. Analyzing the shape of the rupture force distribution reveals additional biophysical information, such as the height of the energy barrier (ΔG‡). Accurately quantifying such distributions requires high-precision characterization of the unfolding events and significantly larger data sets. Yet, identifying events in SMFS data is often done in a manual or semiautomated manner and is obscured by the presence of noise. Here, we introduce, to our knowledge, a new algorithm, FEATHER (force extension analysis using a testable hypothesis for event recognition), to automatically identify the locations of unfolding/unbinding events in SMFS records and thereby deduce the corresponding rupture force and loading rate. FEATHER requires no knowledge of the system under study, does not bias data interpretation toward the dominant behavior of the data, and has two easy-to-interpret, user-defined parameters. Moreover, it is a linear algorithm, so it scales well for large data sets. When analyzing a data set from a polyprotein containing both mechanically labile and robust domains, FEATHER featured a 30-fold improvement in event location precision, an eightfold improvement in a measure of the accuracy of the loading rate and rupture force distributions, and a threefold reduction of false positives in comparison to two representative reference algorithms. We anticipate FEATHER being leveraged in more complex analysis schemes, such as the segmentation of complex force-extension curves for fitting to worm-like chain models and extended in future work to data sets containing both unfolding and refolding transitions.
Collapse
Affiliation(s)
- Patrick R Heenan
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
28
|
Walder R, Van Patten WJ, Adhikari A, Perkins TT. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy. ACS NANO 2018; 12:198-207. [PMID: 29244486 DOI: 10.1021/acsnano.7b05721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Ayush Adhikari
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|