1
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
3
|
Fierling J, John A, Delorme B, Torzynski A, Blanchard GB, Lye CM, Popkova A, Malandain G, Sanson B, Étienne J, Marmottant P, Quilliet C, Rauzi M. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation. Nat Commun 2022; 13:3348. [PMID: 35688832 PMCID: PMC9187723 DOI: 10.1038/s41467-022-30493-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cell apical constriction driven by actomyosin contraction forces is a conserved mechanism during tissue folding in embryo development. While much is now understood of the molecular mechanism responsible for apical constriction and of the tissue-scale integration of the ensuing in-plane deformations, it is still not clear if apical actomyosin contraction forces are necessary or sufficient per se to drive tissue folding. To tackle this question, we use the Drosophila embryo model system that forms a furrow on the ventral side, initiating mesoderm internalization. Past computational models support the idea that cell apical contraction forces may not be sufficient and that active or passive cell apico-basal forces may be necessary to drive cell wedging leading to tissue furrowing. By using 3D computational modelling and in toto embryo image analysis and manipulation, we now challenge this idea and show that embryo-scale force balance at the tissue surface, rather than cell-autonomous shape changes, is necessary and sufficient to drive a buckling of the epithelial surface forming a furrow which propagates and initiates embryo gastrulation. Drosophila mesoderm invagination begins with the formation of a furrow. Here they show that a long-range mechanism, powered by actomyosin contraction between the embryo polar caps, works like a ‘cheese-cutter wire’ indenting the tissue surface and folding it into a propagating furrow.
Collapse
Affiliation(s)
| | - Alphy John
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | - Claire M Lye
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | - Anna Popkova
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | | | | | | | - Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
4
|
Stern T, Shvartsman SY, Wieschaus EF. Deconstructing gastrulation at single-cell resolution. Curr Biol 2022; 32:1861-1868.e7. [PMID: 35290798 PMCID: PMC9221752 DOI: 10.1016/j.cub.2022.02.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Gastrulation movements in all animal embryos start with regulated deformations of patterned epithelial sheets, which are driven by cell divisions, cell shape changes, and cell intercalations. Each of these behaviors has been associated with distinct aspects of gastrulation1-4 and has been a subject of intense research using genetic, cell biological, and more recently, biophysical approaches.5-14 Most of these studies, however, focus either on cellular processes driving gastrulation or on large-scale tissue deformations.15-23 Recent advances in microscopy and image processing create a unique opportunity for integrating these complementary viewpoints.24-28 Here, we take a step toward bridging these complementary strategies and deconstruct the early stages of gastrulation in the entire Drosophila embryo. Our approach relies on an integrated computational framework for cell segmentation and tracking and on efficient algorithms for event detection. The detected events are then mapped back onto the blastoderm shell, providing an intuitive visual means to examine complex cellular activity patterns within the context of their initial anatomic domains. By analyzing these maps, we identified that the loss of nearly half of surface cells to invaginations is compensated primarily by transient mitotic rounding. In addition, by analyzing mapped cell intercalation events, we derived direct quantitative relations between intercalation frequency and the rate of axis elongation. This work is setting the stage for systems-level dissection of a pivotal step in animal development.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Eric F Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Kerstens A, Corthout N, Pavie B, Huang Z, Vernaillen F, Vande Velde G, Munck S. A Label-free Multicolor Optical Surface Tomography (ALMOST) imaging method for nontransparent 3D samples. BMC Biol 2019; 17:1. [PMID: 30616566 PMCID: PMC6323867 DOI: 10.1186/s12915-018-0614-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Current mesoscale 3D imaging techniques are limited to transparent or cleared samples or require the use of X-rays. This is a severe limitation for many research areas, as the 3D color surface morphology of opaque samples—for example, intact adult Drosophila, Xenopus embryos, and other non-transparent samples—cannot be assessed. We have developed “ALMOST,” a novel optical method for 3D surface imaging of reflective opaque objects utilizing an optical projection tomography device in combination with oblique illumination and optical filters. Results As well as demonstrating image formation, we provide background information and explain the reconstruction—and consequent rendering—using a standard filtered back projection algorithm and 3D software. We expanded our approach to fluorescence and multi-channel spectral imaging, validating our results with micro-computed tomography. Different biological and inorganic test samples were used to highlight the versatility of our approach. To further demonstrate the applicability of ALMOST, we explored the muscle-induced form change of the Drosophila larva, imaged adult Drosophila, dynamically visualized the closure of neural folds during neurulation of live Xenopus embryos, and showed the complementarity of our approach by comparison with transmitted light and fluorescence OPT imaging of a Xenopus tadpole. Conclusion Thus, our new modality for spectral/color, macro/mesoscopic 3D imaging can be applied to a variety of model organisms and enables the longitudinal surface dynamics during development to be revealed. Electronic supplementary material The online version of this article (10.1186/s12915-018-0614-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Axelle Kerstens
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Nikky Corthout
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Benjamin Pavie
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Zengjin Huang
- VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.,Neuronal Wiring Lab, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium
| | - Frank Vernaillen
- VIB BioInformatics Core, Rijvisschestraat 126 3R, 9052, Ghent, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Herestraat 49, Box 505, 3000, Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core, Herestraat 49, Box 602, 3000, Leuven, Belgium. .,Research Group Molecular Neurobiology, Department of Neuroscience, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium. .,VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49, Box 602, 3000, Leuven, Belgium.
| |
Collapse
|