1
|
Baxa MC, Lin X, Mukinay CD, Chakravarthy S, Sachleben JR, Antilla S, Hartrampf N, Riback JA, Gagnon IA, Pentelute BL, Clark PL, Sosnick TR. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Sci 2024; 33:e4986. [PMID: 38607226 PMCID: PMC11010952 DOI: 10.1002/pro.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Xiaoxuan Lin
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Cedrick D. Mukinay
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical SciencesIllinois Institute of TechnologyChicagoIllinoisUSA
- Present address:
Cytiva, Fast TrakMarlboroughMAUSA
| | | | - Sarah Antilla
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nina Hartrampf
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Present address:
Department of ChemistryUniversity of ZurichSwitzerland
| | - Joshua A. Riback
- Graduate Program in Biophysical ScienceUniversity of ChicagoChicagoIllinoisUSA
- Present address:
Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Wang G. Cold unfolding of heat-responsive TRPV3. RESEARCH SQUARE 2024:rs.3.rs-4285061. [PMID: 38746116 PMCID: PMC11092857 DOI: 10.21203/rs.3.rs-4285061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The homotetrameric thermosensitive transient receptor potential vanilloid 1-4 (TRPV1-4) channels in sensory neurons are strongly responsive to heat stimuli. However, their cold activations have not been reported in line with the nonzero heat capacity difference during heat or cold unfolding transitions. Here, along with the experimental examinations of the predicted ring size changes in different domains against the central pore during channel gating at various temperatures, the K169A mutant of reduced human TRPV3 was first found to be activated and inactivated by cold below 42°C. Further thermoring analyses revealed distinct heat and cold unfolding pathways, which resulted in different protein thermostabilities. Thus, both cold and heat unfolding transitions of thermosensitive TRPV1-4 channels may exist once a mutation destabilizes the closed state.
Collapse
|
3
|
The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem 2022; 66:875-890. [PMID: 36416865 PMCID: PMC9760427 DOI: 10.1042/ebc20220065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.
Collapse
|
4
|
Puglisi R, Cioni P, Gabellieri E, Presciuttini G, Pastore A, Temussi PA. Heat and cold denaturation of yeast frataxin: The effect of pressure. Biophys J 2022; 121:1502-1511. [PMID: 35278425 PMCID: PMC9072581 DOI: 10.1016/j.bpj.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Yfh1 is a yeast protein with the peculiar characteristic to undergo, in the absence of salt, cold denaturation at temperatures above the water freezing point. This feature makes the protein particularly interesting for studies aiming at understanding the rules that determine protein fold stability. Here, we present the phase diagram of Yfh1 unfolding as a function of pressure (0.1-500 MPa) and temperature 278-313 K (5-40°C) both in the absence and in the presence of stabilizers using Trp fluorescence as a monitor. The protein showed a remarkable sensitivity to pressure: at 293 K, pressures around 10 MPa are sufficient to cause 50% of unfolding. Higher pressures were required for the unfolding of the protein in the presence of stabilizers. The phase diagram on the pressure-temperature plane together with a critical comparison between our results and those found in the literature allowed us to draw conclusions on the mechanism of the unfolding process under different environmental conditions.
Collapse
Affiliation(s)
- Rita Puglisi
- UK-DRI at King's College London, The Wohl Institute, London, (UK)
| | | | | | | | - Annalisa Pastore
- UK-DRI at King's College London, The Wohl Institute, London, (UK); European Synchrotron Radiation Facility, Grenoble, (France).
| | | |
Collapse
|
5
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
6
|
Pulavarti SVSRK, Maguire JB, Yuen S, Harrison JS, Griffin J, Premkumar L, Esposito EA, Makhatadze GI, Garcia AE, Weiss TM, Snell EH, Kuhlman B, Szyperski T. From Protein Design to the Energy Landscape of a Cold Unfolding Protein. J Phys Chem B 2022; 126:1212-1231. [PMID: 35128921 PMCID: PMC9281400 DOI: 10.1021/acs.jpcb.1c10750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.
Collapse
Affiliation(s)
- Surya V S R K Pulavarti
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jack B Maguire
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shirley Yuen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jermel Griffin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward A Esposito
- Malvern Panalytical Inc, Northhampton, Massachsetts 01060, United States
| | - George I Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 08544, United States
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center, Stanford University, Menlo Park, California 94025, United States
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, United States.,Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas Szyperski
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Song J, Li J, Chan HS. Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. J Phys Chem B 2021; 125:6451-6478. [PMID: 34115515 DOI: 10.1021/acs.jpcb.1c02453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An accurate account of disordered protein conformations is of central importance to deciphering the physicochemical basis of biological functions of intrinsically disordered proteins and the folding-unfolding energetics of globular proteins. Physically, disordered ensembles of nonhomopolymeric polypeptides are expected to be heterogeneous, i.e., they should differ from those homogeneous ensembles of homopolymers that harbor an essentially unique relationship between average values of end-to-end distance REE and radius of gyration Rg. It was posited recently, however, that small-angle X-ray scattering (SAXS) data on conformational dimensions of disordered proteins can be rationalized almost exclusively by homopolymer ensembles. Assessing this perspective, chain-model simulations are used to evaluate the discriminatory power of SAXS-determined molecular form factors (MFFs) with regard to homogeneous versus heterogeneous ensembles. The general approach adopted here is not bound by any assumption about ensemble encodability, in that the postulated heterogeneous ensembles we evaluated are not restricted to those entailed by simple interaction schemes. Our analysis of MFFs for certain heterogeneous ensembles with more narrowly distributed REE and Rg indicates that while they deviate from MFFs of homogeneous ensembles, the differences can be rather small. Remarkably, some heterogeneous ensembles with asphericity and REE drastically different from those of homogeneous ensembles can nonetheless exhibit practically identical MFFs, demonstrating that SAXS MFFs do not afford unique characterizations of basic properties of conformational ensembles in general. In other words, the ensemble to MFF mapping is practically many-to-one and likely nonsmooth. Heteropolymeric variations of the REE-Rg relationship were further showcased using an analytical perturbation theory developed here for flexible heteropolymers. Ramifications of our findings for interpretation of experimental data are discussed.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Jichen Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto Faculty of Medicine, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Harish B, Gillilan RE, Zou J, Wang J, Raleigh DP, Royer CA. Protein unfolded states populated at high and ambient pressure are similarly compact. Biophys J 2021; 120:2592-2598. [PMID: 33961866 DOI: 10.1016/j.bpj.2021.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
The relationship between the dimensions of pressure-unfolded states of proteins compared with those at ambient pressure is controversial; resolving this issue is related directly to the mechanisms of pressure denaturation. Moreover, a significant pressure dependence of the compactness of unfolded states would complicate the interpretation of folding parameters from pressure perturbation and make comparison to those obtained using alternative perturbation approaches difficult. Here, we determined the compactness of the pressure-unfolded state of a small, cooperatively folding model protein, CTL9-I98A, as a function of temperature. This protein undergoes both thermal unfolding and cold denaturation, and the temperature dependence of the compactness at atmospheric pressure is known. High-pressure small angle x-ray scattering studies, yielding the radius of gyration and high-pressure diffusion ordered spectroscopy NMR experiments, yielding the hydrodynamic radius were carried out as a function of temperature at 250 MPa, a pressure at which the protein is unfolded. The radius of gyration values obtained at any given temperature at 250 MPa were similar to those reported previously at ambient pressure, and the trends with temperature are similar as well, although the pressure-unfolded state appears to undergo more pronounced expansion at high temperature than the unfolded state at atmospheric pressure. At 250 MPa, the compaction of the unfolded chain was maximal between 25 and 30°C, and the chain expanded upon both cooling and heating. These results reveal that the pressure-unfolded state of this protein is very similar to that observed at ambient pressure, demonstrating that pressure perturbation represents a powerful approach for observing the unfolded states of proteins under otherwise near-native conditions.
Collapse
Affiliation(s)
| | | | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Jinqiu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
9
|
Stenzoski NE, Zou J, Piserchio A, Ghose R, Holehouse AS, Raleigh DP. The Cold-Unfolded State Is Expanded but Contains Long- and Medium-Range Contacts and Is Poorly Described by Homopolymer Models. Biochemistry 2020; 59:3290-3299. [PMID: 32786415 DOI: 10.1021/acs.biochem.0c00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cold unfolding of proteins is predicted by the Gibbs-Helmholtz equation and is thought to be driven by a strongly temperature-dependent interaction of protein nonpolar groups with water. Studies of the cold-unfolded state provide insight into protein energetics, partially structured states, and folding cooperativity and are of practical interest in biotechnology. However, structural characterization of the cold-unfolded state is much less extensive than studies of thermally or chemically denatured unfolded states, in large part because the midpoint of the cold unfolding transition is usually below freezing. We exploit a rationally designed point mutation (I98A) in the hydrophobic core of the C-terminal domain of the ribosomal protein L9 that allows the cold denatured state ensemble to be observed above 0 °C at near neutral pH and ambient pressure in the absence of added denaturants. A combined approach consisting of paramagnetic relaxation enhancement measurements, analysis of small-angle X-ray scattering data, all-atom simulations, and polymer theory provides a detailed description of the cold-unfolded state. Despite a globally expanded ensemble, as determined by small-angle X-ray scattering, sequence-specific medium- and long-range interactions in the cold-unfolded state give rise to deviations from homopolymer-like behavior. Our results reveal that the cold-denatured state is heterogeneous with local and long-range intramolecular interactions that may prime the folded state and also demonstrate that significant long-range interactions are compatible with expanded unfolded ensembles. The work also highlights the limitations of homopolymer-based descriptions of unfolded states of proteins.
Collapse
Affiliation(s)
- Natalie E Stenzoski
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States.,Graduate Programs in Biochemistry, Chemistry and Physics, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Center for Science and Engineering of Living Systems, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel P Raleigh
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Narayan A, Bhattacharjee K, Naganathan AN. Thermally versus Chemically Denatured Protein States. Biochemistry 2019; 58:2519-2523. [PMID: 31083972 DOI: 10.1021/acs.biochem.9b00089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein unfolding thermodynamic parameters are conventionally extracted from equilibrium thermal and chemical denaturation experiments. Despite decades of work, the degree of structure and the compactness of denatured states populated in these experiments are still open questions. Here, building on previous works, we show that thermally and chemically denatured protein states are distinct from the viewpoint of far-ultraviolet circular dichroism experiments that report on the local conformational status of peptide bonds. The differences identified are independent of protein length, structural class, or experimental conditions, highlighting the presence of two sub-ensembles within the denatured states. The sub-ensembles, UT and UD for thermally induced and denaturant-induced unfolded states, respectively, can exclusively exchange populations as a function of temperature at high chemical denaturant concentrations. Empirical analysis suggests that chemically denatured states are ∼50% more expanded than the thermally denatured chains of the same protein. Our observations hint that the strength of protein backbone-backbone interactions and identity versus backbone-solvent/co-solvent interactions determine the conformational distributions. We discuss the implications for protein folding mechanisms, the heterogeneity in relaxation rates, and folding diffusion coefficients.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|