1
|
Kusochek PA, Smitienko OA, Bochenkova AV. Mode-Specific Photoresponse of Retinal Protonated Schiff Base Isomers in the Reversible Photochromic Reactions of Microbial and Animal Rhodopsins. J Phys Chem B 2024; 128:12471-12482. [PMID: 39641505 DOI: 10.1021/acs.jpcb.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The primary photoisomerization reactions of the all-trans to 13-cis and 11-cis to all-trans retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all-trans form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of cis and trans RPSB isomers in both the initial forms and first photoproducts of microbial Krokinobacter eikastus rhodopsin 2 (KR2) and Halobacterium salinarum bacteriorhodopsin (BR), and animal Bos taurus visual rhodopsin (Rho). By simulating photoabsorption band shapes of RPSB inside the proteins, we show that its photoresponse is highly mode-specific for the forward reactions, resulting in excitation of those vibrational modes that facilitate particular double-bond isomerization. The reverse reaction shows specificity only for 13-cis isomers in microbial rhodopsins, whereas the specificity is lost for all-trans RPSB in visual rhodopsin. This indicates evolutionary highly tuned 11-cis chromophore-protein interactions in visual rhodopsin. We also highlight the differences in the photoresponse of RPSB in two microbial rhodopsins and discuss the implications to their excited-state dynamics.
Collapse
Affiliation(s)
- Pavel A Kusochek
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia
| | - Anastasia V Bochenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
2
|
Tejero O, Pamula F, Koyanagi M, Nagata T, Afanasyev P, Das I, Deupi X, Sheves M, Terakita A, Schertler GFX, Rodrigues MJ, Tsai CJ. Active state structures of a bistable visual opsin bound to G proteins. Nat Commun 2024; 15:8928. [PMID: 39414813 PMCID: PMC11484933 DOI: 10.1038/s41467-024-53208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Opsins are G protein-coupled receptors (GPCRs) that have evolved to detect light stimuli and initiate intracellular signaling cascades. Their role as signal transducers is critical to light perception across the animal kingdom. Opsins covalently bind to the chromophore 11-cis retinal, which isomerizes to the all-trans isomer upon photon absorption, causing conformational changes that result in receptor activation. Monostable opsins, responsible for vision in vertebrates, release the chromophore after activation and must bind another retinal molecule to remain functional. In contrast, bistable opsins, responsible for non-visual light perception in vertebrates and for vision in invertebrates, absorb a second photon in the active state to return the chromophore and protein to the inactive state. Structures of bistable opsins in the activated state have proven elusive, limiting our understanding of how they function as bidirectional photoswitches. Here we present active state structures of a bistable opsin, jumping spider rhodopsin isoform-1 (JSR1), in complex with its downstream signaling partners, the Gi and Gq heterotrimers. These structures elucidate key differences in the activation mechanisms between monostable and bistable opsins, offering essential insights for the rational engineering of bistable opsins into diverse optogenetic tools to control G protein signaling pathways.
Collapse
Affiliation(s)
- Oliver Tejero
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen-PSI, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Filip Pamula
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen-PSI, Switzerland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mitsumasa Koyanagi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OMU Advanced Research Institute of Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Xavier Deupi
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen-PSI, Switzerland
- Condensed Matter Theory Group, Laboratory of Theoretical and Computational Physics, PSI Center for Scientific Computing, Theory and Data, Villigen-PSI, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OMU Advanced Research Institute of Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen-PSI, Switzerland.
| | - Matthew J Rodrigues
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen-PSI, Switzerland.
| | - Ching-Ju Tsai
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen-PSI, Switzerland.
| |
Collapse
|
3
|
Wijayaratna D, Sacchetta F, Pedraza-González L, Fanelli F, Sugihara T, Koyanagi M, Piyawardana S, Ghotra K, Thotamune W, Terakita A, Olivucci M, Karunarathne A. In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling. Cell Commun Signal 2024; 22:394. [PMID: 39118111 PMCID: PMC11312219 DOI: 10.1186/s12964-024-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Melanopsin is a photopigment belonging to the G Protein-Coupled Receptor (GPCR) family expressed in a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) and responsible for a variety of processes. The bistability and, thus, the possibility to function under low retinal availability would make melanopsin a powerful optogenetic tool. Here, we aim to utilize mouse melanopsin to trigger macrophage migration by its subcellular optical activation with localized blue light, while simultaneously imaging the migration with red light. To reduce melanopsin's red light sensitivity, we employ a combination of in silico structure prediction and automated quantum mechanics/molecular mechanics modeling to predict minimally invasive mutations to shift its absorption spectrum towards the shorter wavelength region of the visible spectrum without compromising the signaling efficiency. The results demonstrate that it is possible to achieve melanopsin mutants that resist red light-induced activation but are activated by blue light and display properties indicating preserved bistability. Using the A333T mutant, we show that the blue light-induced subcellular melanopsin activation triggers localized PIP3 generation and macrophage migration, which we imaged using red light, demonstrating the optogenetic utility of minimally engineered melanopsins.
Collapse
Affiliation(s)
| | - Filippo Sacchetta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Francesca Fanelli
- Department of Life Sciences, Dulbecco Telethon Institute, University of Modena and Reggio Emilia, Modena, I-41125, Italy
| | - Tomohiro Sugihara
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Mitsumasa Koyanagi
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Senuri Piyawardana
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Kiran Ghotra
- Department of Biology, Siena Heights University, Adrian, MI, 49221, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Akihisa Terakita
- Department of Biology, Osaka Metropolitan University, O 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
- The OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA.
| |
Collapse
|
4
|
Rodrigues MJ, Tejero O, Mühle J, Pamula F, Das I, Tsai CJ, Terakita A, Sheves M, Schertler GFX. Activating an invertebrate bistable opsin with the all-trans 6.11 retinal analog. Proc Natl Acad Sci U S A 2024; 121:e2406814121. [PMID: 39042699 PMCID: PMC11295067 DOI: 10.1073/pnas.2406814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Oliver Tejero
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
- Department of Biology, ETH-Zurich, Zurich, Switzerland
| | - Jonas Mühle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Filip Pamula
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100Rehovot, Israel
| | - Ching-Ju Tsai
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka558-8585, Japan
- The Osaka Metropolitan University Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka558-8585, Japan
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100Rehovot, Israel
| | - Gebhard F. X. Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
| |
Collapse
|
5
|
Nikolaev DM, Shtyrov AA, Vyazmin SY, Vasin AV, Panov MS, Ryazantsev MN. Fluorescence of the Retinal Chromophore in Microbial and Animal Rhodopsins. Int J Mol Sci 2023; 24:17269. [PMID: 38139098 PMCID: PMC10743670 DOI: 10.3390/ijms242417269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Fluorescence of the vast majority of natural opsin-based photoactive proteins is extremely low, in accordance with their functions that depend on efficient transduction of absorbed light energy. However, several recently proposed classes of engineered rhodopsins with enhanced fluorescence, along with the discovery of a new natural highly fluorescent rhodopsin, NeoR, opened a way to exploit these transmembrane proteins as fluorescent sensors and draw more attention to studies on this untypical rhodopsin property. Here, we review the available data on the fluorescence of the retinal chromophore in microbial and animal rhodopsins and their photocycle intermediates, as well as different isomers of the protonated retinal Schiff base in various solvents and the gas phase.
Collapse
Affiliation(s)
- Dmitrii M. Nikolaev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
| | - Andrey A. Shtyrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
| | - Sergey Yu. Vyazmin
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 St. Petersburg, Russia
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
- Center for Biophysical Studies, St. Petersburg State Chemical Pharmaceutical University, Professor Popov str. 14, lit. A, 197022 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 St. Petersburg, Russia
| |
Collapse
|
6
|
Hanai S, Nagata T, Katayama K, Inukai S, Koyanagi M, Inoue K, Terakita A, Kandori H. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Biochemistry 2023; 62:1347-1359. [PMID: 37001008 DOI: 10.1021/acs.biochem.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.
Collapse
|
7
|
Imai H, Kandori H. Functional diversity and evolution in animal rhodopsins: Report for the session 11. Biophys Physicobiol 2023; 20:e201019. [PMID: 38362322 PMCID: PMC10865885 DOI: 10.2142/biophysico.bppb-v20.s019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Affiliation(s)
- Hiroo Imai
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
8
|
Church JR, Olsen JMH, Schapiro I. Induction effects on the absorption maxima of photoreceptor proteins. Biophys Physicobiol 2023; 20:e201007. [PMID: 38362325 PMCID: PMC10865876 DOI: 10.2142/biophysico.bppb-v20.s007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Multiscale simulations have been established as a powerful tool to calculate and predict excitation energies in complex systems such as photoreceptor proteins. In these simulations the chromophore is typically treated using quantum mechanical (QM) methods while the protein and surrounding environment are described by a classical molecular mechanics (MM) force field. The electrostatic interactions between these regions are often treated using electrostatic embedding where the point charges in the MM region polarize the QM region. A more sophisticated treatment accounts also for the polarization of the MM region. In this work, the effect of such a polarizable embedding on excitation energies was benchmarked and compared to electrostatic embedding. This was done for two different proteins, the lipid membrane-embedded jumping spider rhodopsin and the soluble cyanobacteriochrome Slr1393g3. It was found that the polarizable embedding scheme produces absorption maxima closer to experimental values. The polarizable embedding scheme was also benchmarked against expanded QM regions and found to be in qualitative agreement. Treating individual residues as polarizable recovered between 50% and 71% of the QM improvement in the excitation energies, depending on the system. A detailed analysis of each amino acid residue in the chromophore binding pocket revealed that aromatic residues result in the largest change in excitation energy compared to the electrostatic embedding. Furthermore, the computational efficiency of polarizable embedding allowed it to go beyond the binding pocket and describe a larger portion of the environment, further improving the results.
Collapse
Affiliation(s)
- Jonathan R. Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Kouyama T, Ihara K. Existence of two substates in the O intermediate of the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183998. [PMID: 35753392 DOI: 10.1016/j.bbamem.2022.183998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The proton pumping cycle of bacteriorhodopsin (bR) is initiated when the retinal chromophore with the 13-trans configuration is photo-isomerized into the 13-cis configuration. To understand the recovery processes of the initial retinal configuration that occur in the late stage of the photocycle, we have performed a comprehensive analysis of absorption kinetics data collected at various pH levels and at different salt concentrations. The result of analysis revealed the following features of the late stages of the trans photocycle. i) Two substates occur in the O intermediate. ii) The visible absorption band of the first substate (O1) appears at a much shorter wavelength than that of the late substate (O2). iii) O1 is in rapid equilibrium with the preceding state (N), but O1 becomes less stable than N when an ionizable residue (X1) with a pKa value of 6.5 (in 2 M KCl) is deprotonated. iv) At a low pH and at a low salt concentration, the decay time constant of O2 is longer than those of the preceding states, but the relationship between these time constants is altered when the medium pH or the salt concentration is increased. On the basis of the present observations and previous studies on the structure of the chromophore in O, we suspect that the retinal chromophore in O1 takes on a distorted 13-cis configuration and the O1-to-O2 transition is accompanied by cis-to-trans isomerization about C13C14 bond.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
10
|
Pedraza-González L, Barneschi L, Padula D, De Vico L, Olivucci M. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Top Curr Chem (Cham) 2022; 380:21. [PMID: 35291019 PMCID: PMC8924150 DOI: 10.1007/s41061-022-00374-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 10/27/2022]
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
11
|
Church JR, Olsen JMH, Schapiro I. The Impact of Retinal Configuration on the Protein-Chromophore Interactions in Bistable Jumping Spider Rhodopsin-1. Molecules 2021; 27:71. [PMID: 35011302 PMCID: PMC8746357 DOI: 10.3390/molecules27010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Bistable rhodopsins have two stable forms that can be interconverted by light. Due to their ability to act as photoswitches, these proteins are considered as ideal candidates for applications such as optogenetics. In this work, we analyze a recently crystalized bistable rhodopsin, namely the jumping spider rhodopsin-1 (JSR1). This rhodopsin exhibits identical absorption maxima for the parent and the photoproduct form, which impedes its broad application. We performed hybrid QM/MM simulations to study three isomers of the retinal chromophore: the 9-cis, 11-cis and all-trans configurations. The main aim was to gain insight into the specific interactions of each isomer and their impact on the absorption maximum in JSR1. The absorption spectra were computed using sampled snapshots from QM/MM molecular dynamics trajectories and compared to their experimental counterparts. The chromophore-protein interactions were analyzed by visualizing the electrostatic potential of the protein and projecting it onto the chromophore. It was found that the distance between a nearby tyrosine (Y126) residue plays a larger role in the predicted absorption maximum than the primary counterion (E194). Geometric differences between the isomers were also noted, including a structural change in the polyene chain of the chromophore, as well as changes in the nearby hydrogen bonding network.
Collapse
Affiliation(s)
- Jonathan R. Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|
12
|
Optogenetic Modulation of Ion Channels by Photoreceptive Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:73-88. [PMID: 33398808 DOI: 10.1007/978-981-15-8763-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In these 15 years, researches to control cellular responses by light have flourished dramatically to establish "optogenetics" as a research field. In particular, light-dependent excitation/inhibition of neural cells using channelrhodopsins or other microbial rhodopsins is the most powerful and the most widely used optogenetic technique. New channelrhodopsin-based optogenetic tools having favorable characteristics have been identified from a wide variety of organisms or created through mutagenesis. Despite the great efforts, some neuronal activities are still hard to be manipulated by the channelrhodopsin-based tools, indicating that complementary approaches are needed to make optogenetics more comprehensive. One of the feasible and complementary approaches is optical control of ion channels using photoreceptive proteins other than channelrhodopsins. In particular, animal opsins can modulate various ion channels via light-dependent G protein activation. In this chapter, we summarize how such alternative optogenetic tools work and they will be improved.
Collapse
|
13
|
Avsar SY, Kapinos LE, Schoenenberger CA, Schertler GFX, Mühle J, Meger B, Lim RYH, Ostermaier MK, Lesca E, Palivan CG. Immobilization of arrestin-3 on different biosensor platforms for evaluating GPCR binding. Phys Chem Chem Phys 2020; 22:24086-24096. [PMID: 33079118 DOI: 10.1039/d0cp01464h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large and ubiquitous family of membrane receptors of great pharmacological interest. Cell-based assays are the primary tool for assessing GPCR interactions and activation but their design and intrinsic complexity limit their application. Biosensor-based assays that directly and specifically report GPCR-protein binding (e.g. arrestin or G protein) could provide a good alternative. We present an approach based on the stable immobilization of different arrestin-3 proteins (wild type, and two mutants, mutant X (arrestin-3 I386A) and mutant Y (arrestin-3 R393E)) via histidine tags on NTA(Ni2+)-coated sensors in a defined orientation. Using biolayer interferometry (BLI), surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D), we were able to follow the interaction between the different arrestin-3 proteins and a representative GPCR, jumping spider rhodopsin-1 (JSR1), in a label-free manner in real-time. The interactions were quantified as binding affinity, association and dissociation rate constants. The combination of surface-based biosensing methods indicated that JSR1 showed the strongest binding to arrestin mutant Y. Taken together, this work introduces direct label-free, biosensor-based screening approaches that can be easily adapted for testing interactions of proteins and other compounds with different GPCRs.
Collapse
Affiliation(s)
- Saziye Yorulmaz Avsar
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| | - Gebhard F X Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland. and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonas Mühle
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland.
| | - Benoit Meger
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland.
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | | | - Elena Lesca
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland. and Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry and the Swiss Nanoscience Institute, University of Basel, 4002 Basel, Switzerland.
| |
Collapse
|
14
|
Katayama K, Takeyama Y, Enomoto A, Imai H, Kandori H. Disruption of Hydrogen-Bond Network in Rhodopsin Mutations Cause Night Blindness. J Mol Biol 2020; 432:5378-5389. [PMID: 32795534 DOI: 10.1016/j.jmb.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023]
Abstract
Rhodopsin is the photosensitive protein, which binds to 11-cis-retinal as its chromophore. In the dark, rhodopsin exists as a stable complex between the opsin moiety and 11-cis-retinal. The absorption of a light photon converts 11-cis-retinal to all-trans-retinal and initiates our vision. As a result, the increase in the rate of dark activation of rhodopsin reduces its photosensitivity resulting in night blindness. The mutations, G90D and T94I are night blindness-causing mutations that exhibit completely different physicochemical characteristics associated with the dark activation of rhodopsin, such as a high rate of thermal isomerization of 11-cis-retinal and a slow pigment regeneration. To elucidate the molecular mechanism by which G90D and T94I mutations affect rhodopsin dark activation and regeneration, we performed light-induced difference FTIR spectroscopy on dark and primary photo-intermediate states of G90D and T94I mutants. The FTIR spectra clearly show that both charged G90D and hydrophobic T94I mutants alter the H-bond network at the Schiff base region of the chromophore, which weakens the electrostatic interaction with Glu113 counterion. Our results further show an altered water-mediated H-bond network around the central transmembrane region of mutant rhodopsin, which is reminiscent of the active Meta-II state. This altered water-mediated H-bond network may cause thermal isomerization of the chromophore and facilitate rhodopsin dark activation.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yuri Takeyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Akiko Enomoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroo Imai
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
15
|
Manathunga M, Jenkins AJ, Orozco-Gonzalez Y, Ghanbarpour A, Borhan B, Geiger JH, Larsen DS, Olivucci M. Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin. J Phys Chem Lett 2020; 11:4245-4252. [PMID: 32374610 PMCID: PMC9272672 DOI: 10.1021/acs.jpclett.0c00751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-cis to all-trans conversion of retinal protonated Schiff base (rPSB) and all-trans to 15-cis isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.
Collapse
Affiliation(s)
- Madushanka Manathunga
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Yoelvis Orozco-Gonzalez
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Alireza Ghanbarpour
- Department of Chemistry, Michigan State University, Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department of Chemistry, Michigan State University, Lansing, Michigan 48824, United States
| | - James H Geiger
- Department of Chemistry, Michigan State University, Lansing, Michigan 48824, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, I-53100 Siena, Italy
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 Université de Strasbourg-CNRS, F-67034 Strasbourg, France
| |
Collapse
|
16
|
Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 2020; 583:314-318. [DOI: 10.1038/s41586-020-2307-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
|
17
|
Lesca E. Light-Sensitive Membrane Proteins as Tools to Generate Precision Treatments. J Membr Biol 2020; 253:81-86. [PMID: 32248246 DOI: 10.1007/s00232-020-00115-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION BY ANA-NICOLETA BONDAR, BIOPHYSICS SECTION HEAD EDITOR: This issue of the Journal of Membrane Biology inaugurates Up-and-Coming Scientist, in which investigators at early career stages are invited to present recent research in the broad context of their discipline. We inaugurate Up-and-Coming Scientist with the essay by Dr. Elena Lesca of the ETH Zürich and the Paul Scherrer Institut, Switzerland. Dr. Lesca has completed her doctoral degree at the Technical University München, Germany, in 2014, and pursued postdoctoral research at the ETH Zürich and Paul Scherrer Institut, where she is Senior Assistant since 2019. Two recent papers by Dr. Lesca et al. (references 33 and 39) have used X-ray crystallography and experimental biophysics approaches to shed light on the mechanism of action of a membrane receptor from the G Protein-Coupled Receptor (GPCR) family, Jumping Spider Rhodopsin-1 (JSR-1). JSR-1 is a visual rhodopsin activated upon absorption of light by its covalently bound retinal chromophore. Unlike the better-understood bovine rhodopsin GPCR, which is monostable, JSR-1 is bistable (i.e., in JSR-1 the Schiff base that binds retinal to the protein stays protonated throughout the reaction cycle), and absorption of a second photon resets the retinal ligand to the resting state configuration. In her essay, Dr. Lesca discusses the implications of her work on JSR-1 and, more broadly, GPCR research, for state-of-the-art applications in optogenetics and drug design.
Collapse
Affiliation(s)
- Elena Lesca
- Department of Biology, ETH Zürich, 8093, Zurich, Switzerland. .,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
18
|
Kuroi K, Kamijo M, Ueki M, Niwa Y, Hiramatsu H, Nakabayashi T. Time-resolved FTIR study on the structural switching of human galectin-1 by light-induced disulfide bond formation. Phys Chem Chem Phys 2020; 22:1137-1144. [DOI: 10.1039/c9cp04881b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The light-induced disulfide bond technique, which we have previously developed, has enabled the time-resolved measurement of the disulfide-induced conformational switching of the lectin protein human galectin-1.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| | - Mana Kamijo
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Mutsuki Ueki
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yusuke Niwa
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| |
Collapse
|
19
|
Varma N, Mutt E, Mühle J, Panneels V, Terakita A, Deupi X, Nogly P, Schertler GFX, Lesca E. Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proc Natl Acad Sci U S A 2019; 116:14547-14556. [PMID: 31249143 PMCID: PMC6642406 DOI: 10.1073/pnas.1902192116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Light-sensitive G protein-coupled receptors (GPCRs)-rhodopsins-absorb photons to isomerize their covalently bound retinal, triggering conformational changes that result in downstream signaling cascades. Monostable rhodopsins release retinal upon isomerization as opposed to the retinal in bistable rhodopsins that "reisomerize" upon absorption of a second photon. Understanding the mechanistic differences between these light-sensitive GPCRs has been hindered by the scarcity of recombinant models of the latter. Here, we reveal the high-resolution crystal structure of a recombinant bistable rhodopsin, jumping spider rhodopsin-1, bound to the inverse agonist 9-cis retinal. We observe a water-mediated network around the ligand hinting toward the basis of their bistable nature. In contrast to bovine rhodopsin (monostable), the transmembrane bundle of jumping spider rhodopsin-1 as well that of the bistable squid rhodopsin adopts a more "activation-ready" conformation often observed in other nonphotosensitive class A GPCRs. These similarities suggest the role of jumping spider rhodopsin-1 as a potential model system in the study of the structure-function relationship of both photosensitive and nonphotosensitive class A GPCRs.
Collapse
Affiliation(s)
- Niranjan Varma
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Eshita Mutt
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Jonas Mühle
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Valérie Panneels
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Akihisa Terakita
- Department of Biology and Geosciences, Osaka City University, 558-8585 Osaka, Japan
| | - Xavier Deupi
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
- Condensed Matter Theory Group, Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gebhard F X Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland;
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Elena Lesca
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland;
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|