1
|
Zhao H, Wu H, Guseman A, Abeykoon D, Camara CM, Dalal Y, Fushman D, Papoian GA. The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLoS Comput Biol 2024; 20:e1011721. [PMID: 38181064 PMCID: PMC10796010 DOI: 10.1371/journal.pcbi.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/18/2024] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Histones compact and store DNA in both Eukarya and Archaea, forming heterodimers in Eukarya and homodimers in Archaea. Despite this, the folding mechanism of histones across species remains unclear. Our study addresses this gap by investigating 11 types of histone and histone-like proteins across humans, Drosophila, and Archaea through multiscale molecular dynamics (MD) simulations, complemented by NMR and circular dichroism experiments. We confirm and elaborate on the widely applied "folding upon binding" mechanism of histone dimeric proteins and report a new alternative conformation, namely, the inverted non-native dimer, which may be a thermodynamically metastable configuration. Protein sequence analysis indicated that the inverted conformation arises from the hidden ancestral head-tail sequence symmetry underlying all histone proteins, which is congruent with the previously proposed histone evolution hypotheses. Finally, to explore the potential formations of homodimers in Eukarya, we utilized MD-based AWSEM and AI-based AlphaFold-Multimer models to predict their structures and conducted extensive all-atom MD simulations to examine their respective structural stabilities. Our results suggest that eukaryotic histones may also form stable homodimers, whereas their disordered tails bring significant structural asymmetry and tip the balance towards the formation of commonly observed heterotypic dimers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Alex Guseman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Dulith Abeykoon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Christina M. Camara
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Fushman
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
2
|
Shi D, Huang Y, Bai C. Studies of the Mechanism of Nucleosome Dynamics: A Review on Multifactorial Regulation from Computational and Experimental Cases. Polymers (Basel) 2023; 15:polym15071763. [PMID: 37050377 PMCID: PMC10096840 DOI: 10.3390/polym15071763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The nucleosome, which organizes the long coil of genomic DNA in a highly condensed, polymeric way, is thought to be the basic unit of chromosomal structure. As the most important protein–DNA complex, its structural and dynamic features have been successively revealed in recent years. However, its regulatory mechanism, which is modulated by multiple factors, still requires systemic discussion. This study summarizes the regulatory factors of the nucleosome’s dynamic features from the perspective of histone modification, DNA methylation, and the nucleosome-interacting factors (transcription factors and nucleosome-remodeling proteins and cations) and focuses on the research exploring the molecular mechanism through both computational and experimental approaches. The regulatory factors that affect the dynamic features of nucleosomes are also discussed in detail, such as unwrapping, wrapping, sliding, and stacking. Due to the complexity of the high-order topological structures of nucleosomes and the comprehensive effects of regulatory factors, the research on the functional modulation mechanism of nucleosomes has encountered great challenges. The integration of computational and experimental approaches, the construction of physical modes for nucleosomes, and the application of deep learning techniques will provide promising opportunities for further exploration.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Huang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
3
|
Brandani GB, Gopi S, Yamauchi M, Takada S. Molecular dynamics simulations for the study of chromatin biology. Curr Opin Struct Biol 2022; 77:102485. [PMID: 36274422 DOI: 10.1016/j.sbi.2022.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions. We describe the latest method developments; the structural fluctuations of nucleosomes and the various factors affecting them; the organization of chromatin fibers, with particular emphasis on its liquid-like character; the interactions and dynamics of transcription factors on chromatin; and how chromatin organization is modulated by molecular motors acting on DNA.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| |
Collapse
|
4
|
Ishida H, Kono H. Free Energy Landscape of H2A-H2B Displacement From Nucleosome. J Mol Biol 2022; 434:167707. [PMID: 35777463 DOI: 10.1016/j.jmb.2022.167707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Nucleosome reconstitution plays an important role in many cellular functions. As an initial step, H2A-H2B dimer displacement, which is accompanied by disruption of many of the interactions within the nucleosome, should occur. To understand how H2A-H2B dimer displacement occurs, an adaptively biased molecular dynamics (ABMD) simulation was carried out to generate a variety of displacements of the H2A-H2B dimer from the fully wrapped to partially unwrapped nucleosome structures. With regards to these structures, the free energy landscape of the dimer displacement was investigated using umbrella sampling simulations. We found that the main contributors to the free energy were the docking domain of H2A and the C-terminal of H4. There were various paths for the dimer displacement which were dependent on the extent of nucleosomal DNA wrapping, suggesting that modulation of the intra-nucleosomal interaction by external factors such as histone chaperons could control the path for the H2A-H2B dimer displacement. Key residues which contributed to the free energy have also been reported to be involved in the mutations and posttranslational modifications (PTMs) which are important for assembling and/or reassembling the nucleosome at the molecular level and are found in cancer cells at the phenotypic level. Our results give insight into how the H2A-H2B dimer displacement proceeds along various paths according to different interactions within the nucleosome.
Collapse
Affiliation(s)
- Hisashi Ishida
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan
| |
Collapse
|
5
|
DNA-Binding Properties of a Novel Crenarchaeal Chromatin-Organizing Protein in Sulfolobus acidocaldarius. Biomolecules 2022; 12:biom12040524. [PMID: 35454113 PMCID: PMC9025068 DOI: 10.3390/biom12040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
In archaeal microorganisms, the compaction and organization of the chromosome into a dynamic but condensed structure is mediated by diverse chromatin-organizing proteins in a lineage-specific manner. While many archaea employ eukaryotic-type histones for nucleoid organization, this is not the case for the crenarchaeal model species Sulfolobus acidocaldarius and related species in Sulfolobales, in which the organization appears to be mostly reliant on the action of small basic DNA-binding proteins. There is still a lack of a full understanding of the involved proteins and their functioning. Here, a combination of in vitro and in vivo methodologies is used to study the DNA-binding properties of Sul12a, an uncharacterized small basic protein conserved in several Sulfolobales species displaying a winged helix–turn–helix structural motif and annotated as a transcription factor. Genome-wide chromatin immunoprecipitation and target-specific electrophoretic mobility shift assays demonstrate that Sul12a of S. acidocaldarius interacts with DNA in a non-sequence specific manner, while atomic force microscopy imaging of Sul12a–DNA complexes indicate that the protein induces structural effects on the DNA template. Based on these results, and a contrario to its initial annotation, it can be concluded that Sul12a is a novel chromatin-organizing protein.
Collapse
|
6
|
Brandani GB, Tan C, Takada S. The kinetic landscape of nucleosome assembly: A coarse-grained molecular dynamics study. PLoS Comput Biol 2021; 17:e1009253. [PMID: 34314440 PMCID: PMC8345847 DOI: 10.1371/journal.pcbi.1009253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/06/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
The organization of nucleosomes along the Eukaryotic genome is maintained over time despite disruptive events such as replication. During this complex process, histones and DNA can form a variety of non-canonical nucleosome conformations, but their precise molecular details and roles during nucleosome assembly remain unclear. In this study, employing coarse-grained molecular dynamics simulations and Markov state modeling, we characterized the complete kinetics of nucleosome assembly. On the nucleosome-positioning 601 DNA sequence, we observe a rich transition network among various canonical and non-canonical tetrasome, hexasome, and nucleosome conformations. A low salt environment makes nucleosomes stable, but the kinetic landscape becomes more rugged, so that the system is more likely to be trapped in off-pathway partially assembled intermediates. Finally, we find that the co-operativity between DNA bending and histone association enables positioning sequence motifs to direct the assembly process, with potential implications for the dynamic organization of nucleosomes on real genomic sequences. Nucleosomes are biomolecular complexes formed by DNA wrapped around histone proteins. They represent the basic units of Eukaryotic chromosomes, compacting the genome so that it fits into the small nucleus, and regulating important biological processes such as gene expression. Nucleosomes are disassembled during disruptive events such as DNA replication, and re-assembled afterwards to preserve the correct organization of chromatin. However, the molecular details of nucleosome assembly are still not well understood. In particular, experiments found that histones and DNA may associate into a variety of non-canonical complexes, but their precise conformation and role during assembly remain unclear. In this study, we addressed these problems by performing extensive molecular dynamics simulations of nucleosomes undergoing assembly and disassembly. The simulations reveal many insights into the kinetics of assembly, the structure of non-canonical nucleosome intermediates, and the influence of salt concentration and DNA sequence on the assembly process.
Collapse
Affiliation(s)
- Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail: (GBB); (ST)
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail: (GBB); (ST)
| |
Collapse
|
7
|
Winogradoff D, Li P, Joshi H, Quednau L, Maffeo C, Aksimentiev A. Chiral Systems Made from DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003113. [PMID: 33717850 PMCID: PMC7927625 DOI: 10.1002/advs.202003113] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Indexed: 05/05/2023]
Abstract
The very chemical structure of DNA that enables biological heredity and evolution has non-trivial implications for the self-organization of DNA molecules into larger assemblies and provides limitless opportunities for building functional nanostructures. This progress report discusses the natural organization of DNA into chiral structures and recent advances in creating synthetic chiral systems using DNA as a building material. How nucleic acid chirality naturally comes into play in a diverse array of situations is considered first, at length scales ranging from an individual nucleotide to entire chromosomes. Thereafter, chiral liquid crystal phases formed by dense DNA mixtures are discussed, including the ongoing efforts to understand their origins. The report then summarizes recent efforts directed toward building chiral structures, and other structures of complex topology, using the principle of DNA self-assembly. Discussed last are existing and proposed functional man-made nanostructures designed to either probe or harness DNA's chirality, from plasmonics and spintronics to biosensing.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Pin‐Yi Li
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Himanshu Joshi
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Lauren Quednau
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Christopher Maffeo
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| | - Aleksei Aksimentiev
- Center for the Physics of Living CellsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Department of PhysicsUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaILUSA
| |
Collapse
|
8
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
9
|
Doğan D, Arslan M, Uluçay T, Kalyoncu S, Dimitrov S, Kale S. CENP-A Nucleosome is a Sensitive Allosteric Scaffold for DNA and Chromatin Factors. J Mol Biol 2020; 433:166789. [PMID: 33387534 DOI: 10.1016/j.jmb.2020.166789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
Centromeric loci of chromosomes are defined by nucleosomes containing the histone H3 variant CENP-A, which bind their DNA termini more permissively than their canonical counterpart, a feature that is critical for the mitotic fidelity. A recent cryo-EM study demonstrated that the DNA termini of CENP-A nucleosomes, reconstituted with the Widom 601 DNA sequence, are asymmetrically flexible, meaning one terminus is more clearly resolved than the other. However, an earlier work claimed that both ends could be resolved in the presence of two stabilizing single chain variable fragment (scFv) antibodies per nucleosome, and thus are likely permanently bound to the histone octamer. This suggests that the binding of scFv antibodies to the histone octamer surface would be associated with CENP-A nucleosome conformational changes, including stable binding of the DNA termini. Here, we present computational evidence that allows to explain at atomistic level the structural rearrangements of CENP-A nucleosomes resulting from the antibody binding. The antibodies, while they only bind the octamer façades, are capable of altering the dynamics of the nucleosomal core, and indirectly also the surrounding DNA. This effect has more drastic implications for the structure and the dynamics of the CENP-A nucleosome in comparison to its canonical counterpart. Furthermore, we find evidence that the antibodies bind the left and the right octamer façades at different affinities, another manifestation of the DNA sequence. We speculate that the cells could use induction of similar allosteric effects to control centromere function.
Collapse
Affiliation(s)
- Deniz Doğan
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Tuğçe Uluçay
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Sibel Kalyoncu
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey; Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, Balçova, Izmir 35330, Turkey.
| |
Collapse
|
10
|
Vigneaud J, Maury S. [Developmental plasticity in plants: an interaction between hormones and epigenetics at the meristem level]. Biol Aujourdhui 2020; 214:125-135. [PMID: 33357371 DOI: 10.1051/jbio/2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Plants are fixed organisms with continuous development throughout their life and great sensitivity to environmental variations. They react in this way by exhibiting large developmental phenotypic plasticity. This plasticity is partly controlled by (phyto)hormones, but recent studies also suggest the involvement of epigenetic mechanisms. It seems that these two factors may interact in a complex way and especially in the stem cells grouped together in meristems. The objective of this review is to present the current arguments about this interaction which would promote developmental plasticity. Three major points are thus addressed to justify this interaction between hormonal control and epigenetics (control at the chromatin level) for the developmental plasticity of plants: the arguments in favor of an effect of hormones on chromatin and vice versa, the arguments in favor of their roles on developmental plasticity and finally the arguments in favor of the central place of these interactions, the meristems. Various perspectives and applications are discussed.
Collapse
Affiliation(s)
- Julien Vigneaud
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe, Université d'Orléans, EA1207 USC1328, 45067 Orléans, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe, Université d'Orléans, EA1207 USC1328, 45067 Orléans, France
| |
Collapse
|
11
|
Impact of Self-Association on the Architectural Properties of Bacterial Nucleoid Proteins. Biophys J 2020; 120:370-378. [PMID: 33340542 DOI: 10.1016/j.bpj.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The chromosomal DNA of bacteria is folded into a compact body called the nucleoid, which is composed essentially of DNA (∼80%), RNA (∼10%), and a number of different proteins (∼10%). These nucleoid proteins act as regulators of gene expression and influence the organization of the nucleoid by bridging, bending, or wrapping the DNA. These so-called architectural properties of nucleoid proteins are still poorly understood. For example, the reason why certain proteins compact the DNA coil in certain environments but make the DNA more rigid instead in other environments is the subject of ongoing debates. Here, we address the question of the impact of the self-association of nucleoid proteins on their architectural properties and try to determine whether differences in self-association are sufficient to induce large changes in the organization of the DNA coil. More specifically, we developed two coarse-grained models of proteins, which interact identically with the DNA but self-associate differently by forming either clusters or filaments in the absence of the DNA. We showed through Brownian dynamics simulations that self-association of the proteins dramatically increases their ability to shape the DNA coil. Moreover, we observed that cluster-forming proteins significantly compact the DNA coil (similar to the DNA-bridging mode of H-NS proteins), whereas filament-forming proteins significantly increase the stiffness of the DNA chain instead (similar to the DNA-stiffening mode of H-NS proteins). This work consequently suggests that the knowledge of the DNA-binding properties of the proteins is in itself not sufficient to understand their architectural properties. Rather, their self-association properties must also be investigated in detail because they might actually drive the formation of different DNA-protein complexes.
Collapse
|
12
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|