1
|
Honerkamp-Smith AR. Forces and Flows at Cell Surfaces. J Membr Biol 2023; 256:331-340. [PMID: 37773346 PMCID: PMC10947748 DOI: 10.1007/s00232-023-00293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
|
2
|
Nwogbaga I, Kim AH, Camley BA. Physical limits on galvanotaxis. Phys Rev E 2023; 108:064411. [PMID: 38243498 DOI: 10.1103/physreve.108.064411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2023] [Indexed: 01/21/2024]
Abstract
Eukaryotic cells can polarize and migrate in response to electric fields via "galvanotaxis," which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (∼100) highly polarized sensors or many (∼10^{4}) sensors with an ∼6-10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - A Hyun Kim
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
3
|
Ratajczak AM, Sasidharan S, Rivera Gonzalez XI, Miller EJ, Socrier L, Anthony AA, Honerkamp-Smith AR. Measuring flow-mediated protein drift across stationary supported lipid bilayers. Biophys J 2023; 122:1720-1731. [PMID: 37020419 PMCID: PMC10183372 DOI: 10.1016/j.bpj.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Fluid flow near biological membranes influences cell functions such as development, motility, and environmental sensing. Flow can laterally transport extracellular membrane proteins located at the cell-fluid interface. To determine whether this transport contributes to flow signaling in cells, quantitative knowledge of the forces acting on membrane proteins is required. Here, we demonstrate a method for measuring flow-mediated lateral transport of lipid-anchored proteins. We rupture giant unilamellar vesicles to form discrete patches of supported membrane inside rectangular microchannels and then allow proteins to bind to the upper surface of the membrane. While applying flow, we observe the formation of protein concentration gradients that span the membrane patch. By observing how these gradients dynamically respond to changes in applied shear stress, we determine the flow mobility of the lipid-anchored protein. We use simplified model membranes and proteins to demonstrate our method's sensitivity and reproducibility. Our intention was to design a quantitative, reliable method and analysis for protein mobility that we will use to compare flow transport for a variety of proteins, lipid anchors, and membranes in model systems and on living cells.
Collapse
Affiliation(s)
| | | | | | - Ethan J Miller
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Larissa Socrier
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Autumn A Anthony
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
4
|
Gerganova V, Martin SG. Going with the membrane flow: the impact of polarized secretion on bulk plasma membrane flows. FEBS J 2023; 290:669-676. [PMID: 34797957 PMCID: PMC10078680 DOI: 10.1111/febs.16287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/07/2021] [Accepted: 11/18/2021] [Indexed: 02/04/2023]
Abstract
Even the simplest cells show a remarkable degree of intracellular patterning. Like developing multicellular organisms, single cells break symmetry to establish polarity axes, pattern their cortex and interior, and undergo morphogenesis to acquire sometimes complex shapes. Symmetry-breaking and molecular patterns can be established through coupling of negative and positive feedback reactions in biochemical reaction-diffusion systems. Physical forces, perhaps best studied in the contraction of the metazoan acto-myosin cortex, which induces cortical and cytoplasmic flows, also serve to pattern-associated components. A less investigated physical perturbation is the in-plane flow of plasma membrane material caused by membrane trafficking. In this review, we discuss how bulk membrane flows can be generated at sites of active polarized secretion and growth, how they affect the distribution of membrane-associated proteins, and how they may be harnessed for patterning and directional movement in cells across the tree of life.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| |
Collapse
|
5
|
Shi Z, Innes-Gold S, Cohen AE. Membrane tension propagation couples axon growth and collateral branching. SCIENCE ADVANCES 2022; 8:eabo1297. [PMID: 36044581 PMCID: PMC9432834 DOI: 10.1126/sciadv.abo1297] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
Neuronal axons must navigate a mechanically heterogeneous environment to reach their targets, but the biophysical mechanisms coupling mechanosensation, growth, and branching are not fully understood. Here, we show that local changes in membrane tension propagate along axons at approximately 20 μm/s, more than 1000-fold faster than in most other nonmotile cells where this property has been measured. Local perturbations to tension decay along the axon with a length constant of approximately 41 μm. This rapid and long-range mechanical signaling mediates bidirectional competition between axonal branch initiation and growth cone extension. Our data suggest a mechanism by which mechanical cues at one part of a growing axon can affect growth dynamics remotely.
Collapse
Affiliation(s)
- Zheng Shi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sarah Innes-Gold
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Abstract
Dynamic processes on membrane surfaces are essential for biological function. Traditionally, quantitative measurements of lipid/protein motion have been interpreted in the framework of membrane hydrodynamics. However, some recent single-molecule tracking studies have proven difficult to interpret via hydrodynamic arguments. Does this suggest a failure of hydrodynamic theory or simply highlight the dangers in attempting to extend hydrodynamic arguments down to molecular scales? Intermolecular correlations are superior to single-molecule observations for studying hydrodynamics due to the longer length scales involved. The current work reports dynamic pair correlations of lipids in model membranes. Submicron distance-dependent correlations are well resolved, and complementary numerical calculations indicate that hydrodynamic theory can predict membrane dynamics over distances of tens of nanometers and longer. Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.
Collapse
|
7
|
Abstract
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.
Collapse
Affiliation(s)
- Daniel W Swartz
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Physics, Massachusetts Institute of Technology, USA
| | - Brian A Camley
- Department of Physics and Astronomy, Johns Hopkins University, USA
- Department of Biophysics, Johns Hopkins University, USA
| |
Collapse
|
8
|
Kovtun O, Torres R, Ferguson RS, Josephs T, Rosenthal SJ. Single Quantum Dot Tracking Unravels Agonist Effects on the Dopamine Receptor Dynamics. Biochemistry 2021; 60:1031-1043. [PMID: 32584548 DOI: 10.1021/acs.biochem.0c00360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
D2 dopamine receptors (DRD2s) belong to a family of G protein-coupled receptors that modulate synaptic dopaminergic tone via regulation of dopamine synthesis, storage, and synaptic release. DRD2s are the primary target for traditional antipsychotic medications; dysfunctional DRD2 signaling has been linked to major depressive disorder, attention-deficit hyperactivity disorder, addiction, Parkinson's, and schizophrenia. DRD2 lateral diffusion appears to be an important post-translational regulatory mechanism; however, the dynamic response of DRD2s to ligand-induced activation is poorly understood. Dynamic imaging of the long isoform of DRD2 (D2L) fused to an N-terminal antihemagglutinin (HA) epitope and transiently expressed in HEK-293 cells was achieved through a combination of a high-affinity biotinylated anti-HA antigen-binding fragment (Fab) and streptavidin-conjugated quantum dots (QD). Significant reduction (∼40%) in the rate of lateral diffusion of QD-tagged D2L proteins was observed under agonist (quinpirole; QN)-stimulated conditions compared to basal conditions. QN-induced diffusional slowing was accompanied by an increase in frequency, lifetime, and confinement of temporary arrest of lateral diffusion (TALL), an intrinsic property of single receptor lateral motion. The role of the actin cytoskeleton in QN-induced diffusional slowing of D2L was also explored. The observed dynamic changes appear to be a sensitive indicator of the receptor activity status and might also spatially and temporally shape the receptor-mediated downstream signaling. This dynamic information could potentially be useful in informing drug discovery efforts based on single-molecule pharmacology.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Riley S Ferguson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Sandra J Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
9
|
Sorkin B, Diamant H. Persistent collective motion of a dispersing membrane domain. Biophys J 2021; 120:2030-2039. [PMID: 33744264 DOI: 10.1016/j.bpj.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022] Open
Abstract
We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the latter because the diffusion coefficient of the center of mass is inversely proportional to the number of particles. However, in the case of membrane inclusions, we find that the two processes occur on the same timescale, thus significantly prolonging the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional membrane flows, which couple the motions of even the most remote inclusions in the assembly. The same correlations also cause the diffusion coefficient of the center of mass to decay slowly with time, resulting in weak subdiffusion. We confirm our analytical results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications for the stability of nanoscale membrane heterogeneities.
Collapse
Affiliation(s)
- Benjamin Sorkin
- Raymond and Beverly Sackler School of Chemistry, Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Haim Diamant
- Raymond and Beverly Sackler School of Chemistry, Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Ślęzak J, Burov S. From diffusion in compartmentalized media to non-Gaussian random walks. Sci Rep 2021; 11:5101. [PMID: 33658556 PMCID: PMC7930099 DOI: 10.1038/s41598-021-83364-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023] Open
Abstract
In this work we establish a link between two different phenomena that were studied in a large and growing number of biological, composite and soft media: the diffusion in compartmentalized environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean square displacement joined by the exponential shape of the positional probability density. We explore a microscopic model that gives rise to transient confinement, similar to the one observed for hop-diffusion on top of a cellular membrane. The compartmentalization of the media is achieved by introducing randomly placed, identical barriers. Using this model of a heterogeneous medium we derive a general class of random walks with simple jump rules that are dictated by the geometry of the compartments. Exponential decay of positional probability density is observed and we also quantify the significant decrease of the long time diffusion constant. Our results suggest that the observed exponential decay is a general feature of the transient regime in compartmentalized media.
Collapse
Affiliation(s)
- Jakub Ślęzak
- Physics Department, Bar-Ilan University, Ramat Gan, 5290002 Israel
| | - Stanislav Burov
- Physics Department, Bar-Ilan University, Ramat Gan, 5290002 Israel
| |
Collapse
|
11
|
König AI, Sorkin R, Alon A, Nachmias D, Dhara K, Brand G, Yifrach O, Arbely E, Roichman Y, Elia N. Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins. NANOSCALE 2020; 12:3236-3248. [PMID: 31970355 DOI: 10.1039/c9nr08594g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tracking the localization and mobility of individual proteins in live cells is key for understanding how they mediate their function. Such information can be obtained from single molecule imaging techniques including as Single Particle Tracking (SPT) and Single Molecule Localization Microscopy (SMLM). Genetic code expansion (GCE) combined with bioorthogonal chemistry offers an elegant approach for direct labeling of proteins with fluorescent dyes, holding great potential for improving protein labeling in single molecule applications. Here we calibrated conditions for performing SPT and live-SMLM of bioorthogonally labeled plasma membrane proteins in live mammalian cells. Using SPT, the diffusion of bioorthogonally labeled EGF receptor and the prototypical Shaker voltage-activated potassium channel (Kv) was measured and characterized. Applying live-SMLM to bioorthogonally labeled Shaker Kv channels enabled visualizing the plasma membrane distribution of the channel over time with ∼30 nm accuracy. Finally, by competitive labeling with two Fl-dyes, SPT and live-SMLM were performed in a single cell and both the density and dynamics of the EGF receptor were measured at single molecule resolution in subregions of the cell. We conclude that GCE and bioorthogonal chemistry is a highly suitable, flexible approach for protein labeling in quantitative single molecule applications that outperforms current protein live-cell labeling approaches.
Collapse
Affiliation(s)
- Andres I König
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bag N, Holowka DA, Baird BA. Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Mol Biol Cell 2020; 31:709-723. [PMID: 31895009 PMCID: PMC7202073 DOI: 10.1091/mbc.e19-10-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
13
|
Illukkumbura R, Bland T, Goehring NW. Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol 2019; 62:123-134. [PMID: 31760155 PMCID: PMC6968950 DOI: 10.1016/j.ceb.2019.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Beginning with Turing’s seminal work [1], decades of research have demonstrated the fundamental ability of biochemical networks to generate and sustain the formation of patterns. However, it is increasingly appreciated that biochemical networks both shape and are shaped by physical and mechanical processes [2, 3, 4]. One such process is fluid flow. In many respects, the cytoplasm, membrane and actin cortex all function as fluids, and as they flow, they drive bulk transport of molecules throughout the cell. By coupling biochemical activity to long range molecular transport, flows can shape the distributions of molecules in space. Here we review the various types of flows that exist in cells, with the aim of highlighting recent advances in our understanding of how flows are generated and how they contribute to intracellular patterning processes, such as the establishment of cell polarity.
Collapse
Affiliation(s)
| | - Tom Bland
- The Francis Crick Institute, London, UK; Institute for the Physics of Living Systems, University College London, London, UK
| | - Nathan W Goehring
- The Francis Crick Institute, London, UK; Institute for the Physics of Living Systems, University College London, London, UK; MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
14
|
Jacobson K, Kapustina M. Going with the Flow (or Not). Biophys J 2019; 117:791-792. [PMID: 31422823 DOI: 10.1016/j.bpj.2019.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ken Jacobson
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|