1
|
Rodriguez-Leon AI, Ordóñez C, Santamaria R. Simulating the Helicase Enzymatic Action on ds-DNA: A First-Principles Molecular Dynamics Study. ACS OMEGA 2025; 10:3627-3639. [PMID: 39926521 PMCID: PMC11800039 DOI: 10.1021/acsomega.4c08555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025]
Abstract
Understanding DNA replication is fundamental for advancements in fields such as genetics, molecular biology, and medical research. In this study, we investigate the mechanical characteristics of three distinct double-stranded DNA molecules (ds-DNA) as each of them is unwound into two individual single strands. To simulate the helicase action, the double strands are subjected to Langevin forces. By use of sequential and helical steering harmonic forces that simulate the enzymatic action of a helicase, each strand of ds-DNA is opened. The research focuses on determining thermal fluctuations, energy changes, charge variations, and individual forces associated with the separation of each base pair in the examined sequences. The findings emphasize the importance of combining quantum mechanical techniques with an implicit force model. This integrative approach is versatile and provides valuable insights into the essential processes governing DNA mechanisms, particularly in relation to cellular functioning, thereby enhancing our understanding of biological molecules.
Collapse
Affiliation(s)
- Angel Ivan Rodriguez-Leon
- Department
of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Cristian Ordóñez
- Department
of Condensed Matter, Universidad Nacional
Autónoma de Honduras, Tegucigalpa 11101, Honduras
| | - Ruben Santamaria
- Department
of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Cao X, Liu K, Yan S, Li S, Li Y, Jin T, Liu S. Mechanical regulation of the helicase activity of Zika virus NS3. Biophys J 2022; 121:4900-4908. [PMID: 35923103 PMCID: PMC9808545 DOI: 10.1016/j.bpj.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded RNA virus that infects humans and can cause birth defects and neurological disorders. Its non-structural protein 3 (NS3) contains a protease domain and a helicase domain, both of which play essential roles during the viral life cycle. However, it has been shown that ZIKV NS3 has an inherently weak helicase activity, making it unable to unwind long RNA duplexes alone. How this activity is stimulated to process the viral genome and whether the two domains of NS3 are functionally coupled remain unclear. Here, we used optical tweezers to characterize the RNA-unwinding properties of ZIKV NS3-including its processivity, velocity, and step size-at the single-molecule level. We found that external forces that weaken the stability of the duplex RNA substrate significantly enhance the helicase activity of ZIKV NS3. On the other hand, we showed that the protease domain increases the binding affinity of NS3 to RNA but has only a minor effect on unwinding per se. Our findings suggest that the ZIKV NS3 helicase is activated on demand in the context of viral replication, a paradigm that may be generalizable to other flaviviruses.
Collapse
Affiliation(s)
- Xiaocong Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shannon Yan
- Institute of Quantitative Biosciences (QB3), University of California-Berkeley, Berkeley, California
| | - Sai Li
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York
| | - Yajuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York.
| |
Collapse
|
3
|
CMG helicase can use ATPγS to unwind DNA: Implications for the rate-limiting step in the reaction mechanism. Proc Natl Acad Sci U S A 2022; 119:2119580119. [PMID: 35042821 PMCID: PMC8794833 DOI: 10.1073/pnas.2119580119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
The adenosine triphosphate (ATP) analog ATPγS often greatly slows or prevents enzymatic ATP hydrolysis. The eukaryotic CMG (Cdc45, Mcm2 to 7, GINS) replicative helicase is presumed unable to hydrolyze ATPγS and thus unable to perform DNA unwinding, as documented for certain other helicases. Consequently, ATPγS is often used to "preload" CMG onto forked DNA substrates without unwinding before adding ATP to initiate helicase activity. We find here that CMG does hydrolyze ATPγS and couples it to DNA unwinding. Indeed, the rate of unwinding of a 20- and 30-mer duplex fork of different sequences by CMG is only reduced 1- to 1.5-fold using ATPγS compared with ATP. These findings imply that a conformational change is the rate-limiting step during CMG unwinding, not hydrolysis. Instead of using ATPγS for loading CMG onto DNA, we demonstrate here that nonhydrolyzable adenylyl-imidodiphosphate (AMP-PNP) can be used to preload CMG onto a forked DNA substrate without unwinding.
Collapse
|
4
|
Spinks RR, Spenkelink LM, Dixon NE, van Oijen AM. Single-Molecule Insights Into the Dynamics of Replicative Helicases. Front Mol Biosci 2021; 8:741718. [PMID: 34513934 PMCID: PMC8426354 DOI: 10.3389/fmolb.2021.741718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Mickolajczyk KJ, Shelton PMM, Grasso M, Cao X, Warrington SE, Aher A, Liu S, Kapoor TM. Force-dependent stimulation of RNA unwinding by SARS-CoV-2 nsp13 helicase. Biophys J 2020; 120:1020-1030. [PMID: 33340543 PMCID: PMC7837305 DOI: 10.1016/j.bpj.2020.11.2276] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Patrick M M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Xiaocong Cao
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York; Laboratory of Structural Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Sara E Warrington
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York.
| |
Collapse
|
6
|
Gao Y, Yang W. Different mechanisms for translocation by monomeric and hexameric helicases. Curr Opin Struct Biol 2019; 61:25-32. [PMID: 31783299 DOI: 10.1016/j.sbi.2019.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Helicases are ATP-dependent motor proteins that translocate along single-stranded or double-stranded nucleic acids to alter base-pairing structures or molecular interactions. Helicases can be divided to monomeric and hexameric types, each with distinct ternary structures, nucleic acid-binding modes, and translocation mechanisms. It is well established that monomeric helicases translocate by the inchworm mechanism. Recent structures of different superfamilies of hexameric helicases reveal that they use a hand-over hand mechanism for translocation. Structures of bacteriophage T7 replisome illustrate how helicase and polymerase cooperatively catalyze DNA unwinding. In this review, we survey structures of monomeric and hexameric helicases and compare different mechanisms for translocation.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77030, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|