1
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
2
|
Król W, Machelak W, Zielińska M. Positive allosteric modulation of µ-opioid receptor - A new possible approach in the pain management? Biochem Pharmacol 2024; 232:116686. [PMID: 39615602 DOI: 10.1016/j.bcp.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
The antinociceptive effect of the opioid drugs is achieved through activation of the µ-opioid receptor (MOP). The orthosteric and allosteric sites of opioid receptors may be modulated, orthosteric site by endogenous i.e.β-endorphin and exogenous opioids (morphine, oxycodone, fentanyl); whereas BMS-986121, BMS-986122, Comp5, MS1, Ignavine or even oxytocin act on the allosteric site of the MOP. Opioid therapy is associated with numerous side effects, such as: respiratory depression, sedation, constipation, and importantly, prolonged therapy can influence the development of tolerance, overdose, and addiction. Opioid tolerance is a result of MOP internalization and desensitization, preceded by MOP phosphorylation, performed by protein kinases such as: PKA, PKC, GRKs or CaMKII. In vitro and in vivo data suggest that positive allosteric modulators may enhance antinociception triggered by orthosteric ligands and reduce side effects, which would allow the dose of opioids to be reduced and thus provide a more effective therapy. In this review, we present that positive modulation of the allosteric sites of MOP may constitute a new strategy for pain therapy.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Kaneko S, Imai S, Uchikubo-Kamo T, Hisano T, Asao N, Shirouzu M, Shimada I. Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator. Nat Commun 2024; 15:3544. [PMID: 38740791 DOI: 10.1038/s41467-024-47792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the μ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.
Collapse
MESH Headings
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Allosteric Regulation
- Humans
- Cryoelectron Microscopy
- Protein Binding
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- HEK293 Cells
- Ligands
- Models, Molecular
- Protein Conformation
Collapse
Affiliation(s)
- Shun Kaneko
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Imai
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
| | | | - Tamao Hisano
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Nobuaki Asao
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Ichio Shimada
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
4
|
Wang Y, Ngo VA, Wang X. Stereoselective recognition of morphine enantiomers by μ-opioid receptor. Natl Sci Rev 2024; 11:nwae029. [PMID: 38410825 PMCID: PMC10896590 DOI: 10.1093/nsr/nwae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 02/28/2024] Open
Abstract
Stereospecific recognition of chiral molecules plays a crucial role in biological systems. The μ-opioid receptor (MOR) exhibits binding affinity towards (-)-morphine, a well-established gold standard in pain management, while it shows minimal binding affinity for the (+)-morphine enantiomer, resulting in a lack of analgesic activity. Understanding how MOR stereoselectively recognizes morphine enantiomers has remained a puzzle in neuroscience and pharmacology for over half-a-century due to the lack of direct observation techniques. To unravel this mystery, we constructed the binding and unbinding processes of morphine enantiomers with MOR via molecular dynamics simulations to investigate the thermodynamics and kinetics governing MOR's stereoselective recognition of morphine enantiomers. Our findings reveal that the binding of (-)-morphine stabilizes MOR in its activated state, exhibiting a deep energy well and a prolonged residence time. In contrast, (+)-morphine fails to sustain the activation state of MOR. Furthermore, the results suggest that specific residues, namely D1142.50 and D1473.32, are deprotonated in the active state of MOR bound to (-)-morphine. This work highlights that the selectivity in molecular recognition goes beyond binding affinities, extending into the realm of residence time.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Van A Ngo
- Advanced Computing for Life Sciences and Engineering Group, Science Engagement Section, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge 37831, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Zhao M, Kognole AA, Jo S, Tao A, Hazel A, MacKerell AD. GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations. J Comput Chem 2023; 44:1719-1732. [PMID: 37093676 PMCID: PMC10330275 DOI: 10.1002/jcc.27121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The Grand Canonical Monte Carlo (GCMC) ensemble defined by the excess chemical potential, μex , volume, and temperature, in the context of molecular simulations allows for variations in the number of particles in the system. In practice, GCMC simulations have been widely applied for the sampling of rare gasses and water, but limited in the context of larger molecules. To overcome this limitation, the oscillating μex GCMC method was introduced and shown to be of utility for sampling small solutes, such as formamide, propane, and benzene, as well as for ionic species such as monocations, acetate, and methylammonium. However, the acceptance of GCMC insertions is low, and the method is computationally demanding. In the present study, we improved the sampling efficiency of the GCMC method using known cavity-bias and configurational-bias algorithms in the context of GPU architecture. Specifically, for GCMC simulations of aqueous solution systems, the configurational-bias algorithm was extended by applying system partitioning in conjunction with a random interval extraction algorithm, thereby improving the efficiency in a highly parallel computing environment. The method is parallelized on the GPU using CUDA and OpenCL, allowing for the code to run on both Nvidia and AMD GPUs, respectively. Notably, the method is particularly well suited for GPU computing as the large number of threads allows for simultaneous sampling of a large number of configurations during insertion attempts without additional computational overhead. In addition, the partitioning scheme allows for simultaneous insertion attempts for large systems, offering considerable efficiency. Calculations on the BK Channel, a transporter, including a lipid bilayer with over 760,000 atoms, show a speed up of ~53-fold through the use of system partitioning. The improved algorithm is then combined with an enhanced μex oscillation protocol and shown to be of utility in the context of the site-identification by ligand competitive saturation (SILCS) co-solvent sampling approach as illustrated through application to the protein CDK2.
Collapse
Affiliation(s)
- Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | | | | | | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Alberini G, Alexis Paz S, Corradi B, Abrams CF, Benfenati F, Maragliano L. Molecular Dynamics Simulations of Ion Permeation in Human Voltage-Gated Sodium Channels. J Chem Theory Comput 2023; 19:2953-2972. [PMID: 37116214 DOI: 10.1021/acs.jctc.2c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The recent determination of cryo-EM structures of voltage-gated sodium (Nav) channels has revealed many details of these proteins. However, knowledge of ionic permeation through the Nav pore remains limited. In this work, we performed atomistic molecular dynamics (MD) simulations to study the structural features of various neuronal Nav channels based on homology modeling of the cryo-EM structure of the human Nav1.4 channel and, in addition, on the recently resolved configuration for Nav1.2. In particular, single Na+ permeation events during standard MD runs suggest that the ion resides in the inner part of the Nav selectivity filter (SF). On-the-fly free energy parametrization (OTFP) temperature-accelerated molecular dynamics (TAMD) was also used to calculate two-dimensional free energy surfaces (FESs) related to single/double Na+ translocation through the SF of the homology-based Nav1.2 model and the cryo-EM Nav1.2 structure, with different realizations of the DEKA filter domain. These additional simulations revealed distinct mechanisms for single and double Na+ permeation through the wild-type SF, which has a charged lysine in the DEKA ring. Moreover, the configurations of the ions in the SF corresponding to the metastable states of the FESs are specific for each SF motif. Overall, the description of these mechanisms gives us new insights into ion conduction in human Nav cryo-EM-based and cryo-EM configurations that could advance understanding of these systems and how they differ from potassium and bacterial Nav channels.
Collapse
Affiliation(s)
- Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Sergio Alexis Paz
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisicoquímica de Córdoba (INFIQC), X5000HUA Córdoba, Argentina
| | - Beatrice Corradi
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
7
|
Li Z, Liu J, Dong F, Chang N, Huang R, Xia M, Patterson TA, Hong H. Three-Dimensional Structural Insights Have Revealed the Distinct Binding Interactions of Agonists, Partial Agonists, and Antagonists with the µ Opioid Receptor. Int J Mol Sci 2023; 24:ijms24087042. [PMID: 37108204 PMCID: PMC10138646 DOI: 10.3390/ijms24087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
8
|
Insights into divalent cation regulation and G 13-coupling of orphan receptor GPR35. Cell Discov 2022; 8:135. [PMID: 36543774 PMCID: PMC9772185 DOI: 10.1038/s41421-022-00499-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G protein-coupled receptors (GPCRs) with limited atomic evidence. In addition, compared with G protein subtypes Gs, Gi/o, and Gq/11, insufficient structural evidence is accessible to understand the coupling mechanism of G12/13 protein by GPCRs. Orphan receptor GPR35, which is predominantly expressed in the gastrointestinal tract and is closely related to inflammatory bowel diseases (IBDs), stands out as a prototypical receptor for investigating ionic modulation and G13 coupling. Here we report a cryo-electron microscopy structure of G13-coupled GPR35 bound to an anti-allergic drug, lodoxamide. This structure reveals a novel divalent cation coordination site and a unique ionic regulatory mode of GPR35 and also presents a highly positively charged binding pocket and the complementary electrostatic ligand recognition mode, which explain the promiscuity of acidic ligand binding by GPR35. Structural comparison of the GPR35-G13 complex with other G protein subtypes-coupled GPCRs reveals a notable movement of the C-terminus of α5 helix of the Gα13 subunit towards the receptor core and the least outward displacement of the cytoplasmic end of GPR35 TM6. A featured 'methionine pocket' contributes to the G13 coupling by GPR35. Together, our findings provide a structural basis for divalent cation modulation, ligand recognition, and subsequent G13 protein coupling of GPR35 and offer a new opportunity for designing GPR35-targeted drugs for the treatment of IBDs.
Collapse
|
9
|
Zou R, Wang X, Li S, Chan HCS, Vogel H, Yuan S. The role of metal ions in G protein‐coupled receptor signalling and drug discovery. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongfeng Zou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
| | - Xueying Wang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Shu Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - H. C. Stephen Chan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Horst Vogel
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- AlphaMol Science Ltd Shenzhen China
| |
Collapse
|
10
|
Marmolejo-Valencia AF, Madariaga-Mazón A, Martinez-Mayorga K. Bias-inducing allosteric binding site in mu-opioid receptor signaling. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
G-protein-biased agonism of the mu-opioid receptor (μ-OR) is emerging as a promising strategy in analgesia. A deep understanding of how biased agonists modulate and differentiate G-protein-coupled receptors (GPCR) signaling pathways and how this is transferred into the cell are open questions. Here, using extensive all-atom molecular dynamics simulations, we analyzed the binding recognition process and signaling effects of three prototype μ-OR agonists. Our suggested structural mechanism of biased signaling in μ-OR involves an allosteric sodium ion site, water networks, conformational rearrangements in conserved motifs and collective motions of loops and transmembrane helices. These analyses led us to highlight the relevance of a bias-inducing allosteric binding site in the understanding of μ-OR’s G-protein-biased signaling. These results also suggest a competitive equilibrium between the agonists and the allosteric sodium ion, where the bias-inducing allosteric binding site can be modulated by this ion or an agonist such as herkinorin. Notably, herkinorin arises as the archetype modulator of μ-OR and its interactive pattern could be used for screening efforts via protein–ligand interaction fingerprint (PLIF) studies.
Article highlights
Agonists and a sodium ion compete for the bias-inducing allosteric binding site that modulates signaling in mu-opioid receptors.
Molecular dynamics simulations of the prototype μ-OR agonist suggest a competitive equilibrium involving the agonist and an allosteric sodium ion.
Analysis of experimental data from the literature and molecular models provides the structural bases of biased agonism on μ-OR.
Collapse
|
11
|
Agasid MT, Sørensen L, Urner LH, Yan J, Robinson CV. The Effects of Sodium Ions on Ligand Binding and Conformational States of G Protein-Coupled Receptors-Insights from Mass Spectrometry. J Am Chem Soc 2021; 143:4085-4089. [PMID: 33711230 PMCID: PMC7995251 DOI: 10.1021/jacs.0c11837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The use of mass spectrometry
to investigate proteins is now well
established and provides invaluable information for both soluble and
membrane protein assemblies. Maintaining transient noncovalent interactions
under physiological conditions, however, remains challenging. Here,
using nanoscale electrospray ionization emitters, we establish conditions
that enable mass spectrometry of two G protein-coupled receptors (GPCR)
from buffers containing high concentrations of sodium ions. For the
Class A GPCR, the adenosine 2A receptor, we observe ligand-induced
changes to sodium binding of the receptor at the level of individual
sodium ions. We find that antagonists promote sodium binding while
agonists attenuate sodium binding. These findings are in line with
high-resolution X-ray crystallography wherein only inactive conformations
retain sodium ions in allosteric binding pockets. For the glucagon
receptor (a Class B GPCR) we observed enhanced ligand binding in electrospray
buffers containing high concentrations of sodium, as opposed to ammonium
acetate buffers. A combination of native and -omics mass spectrometry
revealed the presence of a lipophilic negative allosteric modulator.
These experiments highlight the advantages of implementing native
mass spectrometry, from electrospray buffers containing high concentrations
of physiologically relevant salts, to inform on allosteric ions or
ligands with the potential to define their roles on GPCR function.
Collapse
Affiliation(s)
- Mark T Agasid
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Lars Sørensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Leonhard H Urner
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jun Yan
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
12
|
Slc1a3-2A-CreERT2 mice reveal unique features of Bergmann glia and augment a growing collection of Cre drivers and effectors in the 129S4 genetic background. Sci Rep 2021; 11:5412. [PMID: 33686166 PMCID: PMC7940647 DOI: 10.1038/s41598-021-84887-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic variation is a primary determinant of phenotypic diversity. In laboratory mice, genetic variation can be a serious experimental confounder, and thus minimized through inbreeding. However, generalizations of results obtained with inbred strains must be made with caution, especially when working with complex phenotypes and disease models. Here we compared behavioral characteristics of C57Bl/6—the strain most widely used in biomedical research—with those of 129S4. In contrast to 129S4, C57Bl/6 demonstrated high within-strain and intra-litter behavioral hyperactivity. Although high consistency would be advantageous, the majority of disease models and transgenic tools are in C57Bl/6. We recently established six Cre driver lines and two Cre effector lines in 129S4. To augment this collection, we genetically engineered a Cre line to study astrocytes in 129S4. It was validated with two Cre effector lines: calcium indicator gCaMP5g-tdTomato and RiboTag—a tool widely used to study cell type-specific translatomes. These reporters are in different genomic loci, and in both the Cre was functional and astrocyte-specific. We found that calcium signals lasted longer and had a higher amplitude in cortical compared to hippocampal astrocytes, genes linked to a single neurodegenerative disease have highly divergent expression patterns, and that ribosome proteins are non-uniformly expressed across brain regions and cell types.
Collapse
|
13
|
Lavington S, Watts A. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev 2020; 12:10.1007/s12551-020-00775-5. [PMID: 33215301 PMCID: PMC7755959 DOI: 10.1007/s12551-020-00775-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.
Collapse
Affiliation(s)
- Steven Lavington
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
14
|
Kognole AA, MacKerell AD. Contributions and competition of Mg 2+ and K + in folding and stabilization of the Twister ribozyme. RNA (NEW YORK, N.Y.) 2020; 26:1704-1715. [PMID: 32769092 PMCID: PMC7566569 DOI: 10.1261/rna.076851.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Native folded and compact intermediate states of RNA typically involve tertiary structures in the presence of divalent ions such as Mg2+ in a background of monovalent ions. In a recent study, we have shown how the presence of Mg2+ impacts the transition from partially unfolded to folded states through a "push-pull" mechanism where the ion both favors and disfavors the sampling of specific phosphate-phosphate interactions. To further understand the ion atmosphere of RNA in folded and partially folded states results from atomistic umbrella sampling and oscillating chemical potential grand canonical Monte Carlo/molecular dynamics (GCMC/MD) simulations are used to obtain atomic-level details of the distributions of Mg2+ and K+ ions around Twister RNA. Results show the presence of 100 mM Mg2+ to lead to increased charge neutralization over that predicted by counterion condensation theory. Upon going from partially unfolded to folded states, overall charge neutralization increases at all studied ion concentrations that, while associated with an increase in the number of direct ion-phosphate interactions, is fully accounted for by the monovalent K+ ions. Furthermore, K+ preferentially interacts with purine N7 atoms of helical regions in partially unfolded states, thereby potentially stabilizing the helical regions. Thus, both secondary helical structures and formation of tertiary structures leads to increased counterion condensation, thereby stabilizing those structural features of Twister. Notably, it is shown that K+ can act as a surrogate for Mg2+ by participating in specific interactions with nonsequential phosphate pairs that occur in the folded state, explaining the ability of Twister to self-cleave at submillimolar Mg2+ concentrations.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| |
Collapse
|
15
|
Bartuzi D, Wróbel TM, Kaczor AA, Matosiuk D. Tuning Down the Pain - An Overview of Allosteric Modulation of Opioid Receptors: Mechanisms of Modulation, Allosteric Sites, Modulator Syntheses. Curr Top Med Chem 2020; 20:2852-2865. [PMID: 32479245 DOI: 10.2174/1568026620666200601155451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Opioid signaling plays a central role in pain perception. As such, it remains the main target in the development of antinociceptive agents, despite serious side effects involved. In recent years, hopes for improved opioid painkillers are rising, together with our understanding of allosterism and biased signaling mechanisms. In this review, we focus on recently discovered allosteric modulators of opioid receptors, insights into phenomena underlying their action, as well as on how they extend our understanding of mechanisms of previously known compounds. A brief overlook of their synthesis is also presented.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Goel H, Yu W, Ustach VD, Aytenfisu AH, Sun D, MacKerell AD. Impact of electronic polarizability on protein-functional group interactions. Phys Chem Chem Phys 2020; 22:6848-6860. [PMID: 32195493 PMCID: PMC7194236 DOI: 10.1039/d0cp00088d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interactions of proteins with functional groups are key to their biological functions, making it essential that they be accurately modeled. To investigate the impact of the inclusion of explicit treatment of electronic polarizability in force fields on protein-functional group interactions, the additive CHARMM and Drude polarizable force field are compared in the context of the Site-Identification by Ligand Competitive Saturation (SILCS) simulation methodology from which functional group interaction patterns with five proteins for which experimental binding affinities of multiple ligands are available, were obtained. The explicit treatment of polarizability produces significant differences in the functional group interactions in the ligand binding sites including overall enhanced binding of functional groups to the proteins. This is associated with variations of the dipole moments of solutes representative of functional groups in the binding sites relative to aqueous solution with higher dipole moments systematically occurring in the latter, though exceptions occur with positively charged methylammonium. Such variation indicates the complex, heterogeneous nature of the electronic environments of ligand binding sites and emphasizes the inherent limitation of fixed charged, additive force fields for modeling ligand-protein interactions. These effects yield more defined orientation of the functional groups in the binding pockets and a small, but systematic improvement in the ability of the SILCS method to predict the binding orientation and relative affinities of ligands to their target proteins. Overall, these results indicate that the physical model associated with the explicit treatment of polarizability along with the presence of lone pairs in a force field leads to changes in the nature of the interactions of functional groups with proteins versus that occurring with additive force fields, suggesting the utility of polarizable force fields in obtaining a more realistic understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Himanshu Goel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Vincent D Ustach
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Asaminew H Aytenfisu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Delin Sun
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St., Baltimore, Maryland 21201, USA.
| |
Collapse
|
17
|
Kognole AA, MacKerell AD. Mg 2+ Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs. Biophys J 2020; 118:1424-1437. [PMID: 32053774 PMCID: PMC7091459 DOI: 10.1016/j.bpj.2020.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
RNA molecules perform a variety of biological functions for which the correct three-dimensional structure is essential, including as ribozymes where they catalyze chemical reactions. Metal ions, especially Mg2+, neutralize these negatively charged nucleic acids and specifically stabilize RNA tertiary structures as well as impact the folding landscape of RNAs as they assume their tertiary structures. Specific binding sites of Mg2+ in folded conformations of RNA have been studied extensively; however, the full range of interactions of the ion with compact intermediates and unfolded states of RNA is challenging to investigate, and the atomic details of the mechanism by which the ion facilitates tertiary structure formation is not fully known. Here, umbrella sampling combined with oscillating chemical potential Grand Canonical Monte Carlo/molecular dynamics simulations are used to capture the energetics and atomic-level details of Mg2+-RNA interactions that occur along an unfolding pathway of the Twister ribozyme. The free energy profiles reveal stabilization of partially unfolded states by Mg2+, as observed in unfolding experiments, with this stabilization being due to increased sampling of simultaneous interactions of Mg2+ with two or more nonsequential phosphate groups. Notably, these results indicate a push-pull mechanism in which the Mg2+-RNA interactions actually lead to destabilization of specific nonsequential phosphate-phosphate interactions (i.e., pushed apart), whereas other interactions are stabilized (i.e., pulled together), a balance that stabilizes unfolded states and facilitates the folding of Twister, including the formation of hydrogen bonds associated with the tertiary structure. This study establishes a better understanding of how Mg2+-ion interactions contribute to RNA structural properties and stability.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
18
|
Jullié D, Gondin AB, von Zastrow M, Canals M. Opioid Pharmacology under the Microscope. Mol Pharmacol 2020; 98:425-432. [PMID: 32198210 DOI: 10.1124/mol.119.119321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
The powerful analgesic effects of opioid drugs have captivated the interest of physicians and scientists for millennia, and the ability of opioid drugs to produce serious undesired effects has been recognized for a similar period of time (Kieffer and Evans, 2009). Many of these develop progressively with prolonged or repeated drug use and then persist, motivating particular interest in understanding how opioid drugs initiate adaptive or maladaptive modifications in neural function or regulation. Exciting advances have been made over the past several years in elucidating drug-induced changes at molecular, cellular, and physiologic scales of analysis. The present review will highlight some recent cellular studies that we believe bridge across scales and will focus on optical imaging approaches that put opioid drug action "under the microscope." SIGNIFICANCE STATEMENT: Opioid receptors are major pharmacological targets, but their signaling at the cellular level results from a complex interplay between pharmacology, regulation, subcellular localization, and membrane trafficking. This minireview discusses recent advances in understanding the cellular biology of opioid receptors, emphasizing particular topics discussed at the 50th anniversary of the International Narcotics Research Conference. Our goal is to highlight distinct signaling and regulatory properties emerging from the cellular biology of opioid receptors and discuss potential relevance to therapeutics.
Collapse
Affiliation(s)
- Damien Jullié
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Arisbel B Gondin
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Mark von Zastrow
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Meritxell Canals
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| |
Collapse
|
19
|
MacKerell AD. Ions Everywhere? Mg 2+ in the μ-Opioid GPCR and Atomic Details of Their Impact on Function. Biophys J 2020; 118:783-784. [PMID: 31676136 DOI: 10.1016/j.bpj.2019.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Filizola and co-workers have applied a combination of long-time molecular dynamics and oscillating chemical potential grand canonical Monte Carlo/molecular dynamics to investigate the distribution of Mg2+ and Na+ in the μ-opioid receptor and their impact on its function. Results indicate atomic details of potential mechanisms by which Mg2+ leads to increased efficacy of opioid analgesics. The presence of information flow between the extracellular loops and the intracellular region of the G-protein-coupled receptors that interacts with G-proteins in the presence of Mg2+ may be a phenomenon occurring in other G-protein-coupled receptors and, therefore, potentially of broad impact.
Collapse
Affiliation(s)
- Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.
| |
Collapse
|