1
|
Melikishvili M, Fried MG, Fondufe-Mittendorf YN. Cooperative nucleic acid binding by Poly ADP-ribose polymerase 1. Sci Rep 2024; 14:7530. [PMID: 38553566 PMCID: PMC10980755 DOI: 10.1038/s41598-024-58076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain (∆CAT) or zinc fingers 1 and 2 (∆Zn1∆Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by ∆CAT and ∆Zn1∆Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the ∆Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Michael G Fried
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | | |
Collapse
|
2
|
Ramírez Montero D, Liu Z, Dekker NH. De novo fabrication of custom-sequence plasmids for the synthesis of long DNA constructs with extrahelical features. Biophys J 2024; 123:31-41. [PMID: 37968907 PMCID: PMC10808024 DOI: 10.1016/j.bpj.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
DNA constructs for single-molecule experiments often require specific sequences and/or extrahelical/noncanonical structures to study DNA-processing mechanisms. The precise introduction of such structures requires extensive control of the sequence of the initial DNA substrate. A commonly used substrate in the synthesis of DNA constructs is plasmid DNA. Nevertheless, the controlled introduction of specific sequences and extrahelical/noncanonical structures into plasmids often requires several rounds of cloning on pre-existing plasmids whose sequence one cannot fully control. Here, we describe a simple and efficient way to synthesize 10.1-kb plasmids de novo using synthetic gBlocks that provides full control of the sequence. Using these plasmids, we developed a 1.5-day protocol to assemble 10.1-kb linear DNA constructs with end and internal modifications. As a proof of principle, we synthesize two different DNA constructs with biotinylated ends and one or two internal 3' single-stranded DNA flaps, characterize them using single-molecule force and fluorescence spectroscopy, and functionally validate them by showing that the eukaryotic replicative helicase Cdc45/Mcm2-7/GINS (CMG) binds the 3' single-stranded DNA flap and translocates in the expected direction. We anticipate that our approach can be used to synthesize custom-sequence DNA constructs for a variety of force and fluorescence single-molecule spectroscopy experiments to interrogate DNA replication, DNA repair, and transcription.
Collapse
Affiliation(s)
- Daniel Ramírez Montero
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Zhaowei Liu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
3
|
Marcus AH, Heussman D, Maurer J, Albrecht CS, Herbert P, von Hippel PH. Studies of Local DNA Backbone Conformation and Conformational Disorder Using Site-Specific Exciton-Coupled Dimer Probe Spectroscopy. Annu Rev Phys Chem 2023; 74:245-265. [PMID: 36696590 PMCID: PMC10590263 DOI: 10.1146/annurev-physchem-090419-041204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The processes of genome expression, regulation, and repair require direct interactions between proteins and DNA at specific sites located at and near single-stranded-double-stranded DNA (ssDNA-dsDNA) junctions. Here, we review the application of recently developed spectroscopic methods and analyses that combine linear absorbance and circular dichroism spectroscopy with nonlinear 2D fluorescence spectroscopy to study the local conformations and conformational disorder of the sugar-phosphate backbones of ssDNA-dsDNA fork constructs that have been internally labeled with exciton-coupled cyanine (iCy3)2 dimer probes. With the application of these methods, the (iCy3)2 dimer can serve as a reliable probe of the mean local conformations and conformational distributions of the sugar-phosphate backbones of dsDNA at various critical positions. The results of our studies suggest a possible structural framework for understanding the roles of DNA breathing in driving the processes of protein-DNA complex assembly and function.
Collapse
Affiliation(s)
- Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Jack Maurer
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Claire S Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
4
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
5
|
Villaluenga JPG, Brunete D, Cao-García FJ. Competitive ligand binding kinetics to linear polymers. Phys Rev E 2023; 107:024401. [PMID: 36932540 DOI: 10.1103/physreve.107.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Different types of ligands compete in binding to polymers with different consequences for the physical and chemical properties of the resulting complex. Here, we derive a general kinetic model for the competitive binding kinetics of different types of ligands to a linear polymer, using the McGhee and von Hippel detailed binding-site counting procedure. The derived model allows the description of the competitive binding process in terms of the size of the ligand, binding, and release rates, and cooperativity parameters. We illustrate the implications of the general theory showing the equations for the competitive binding of two ligands. The size of the ligand, given by the number of monomers occluded, is shown to have a great impact on competitive binding. Ligands requiring a large available gap for binding are strongly inhibited by smaller ligands. Ligand size then has a leading role compared to binding affinity or cooperativity. For ligands that can bind in different modes (i.e., different number of monomers), this implies that they are more effective in covering or passivating the polymer in lower modes, if the different modes have similar binding energies.
Collapse
Affiliation(s)
- Juan P G Villaluenga
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
| | - David Brunete
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
| | - Francisco Javier Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Calle Faraday, 9, 28049 Madrid, Spain
| |
Collapse
|
6
|
Villaluenga JP, Cao-García FJ. Cooperative kinetics of ligand binding to linear polymers. Comput Struct Biotechnol J 2022; 20:521-533. [PMID: 35495112 PMCID: PMC9019704 DOI: 10.1016/j.csbj.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
Cooperative kinetic equation for large ligands binding to long polymers. Cooperativity in general affects binding and release rates. Appropriate counting of the available binding sites for a ligand to a linear polymer. Positive cooperativity increases polymer coverage by the ligand. Large ligand size reduces cooperativity effects.
Ligands change the chemical and mechanical properties of polymers. In particular, single strand binding protein (SSB) non-specifically bounds to single-stranded DNA (ssDNA), modifying the ssDNA stiffness and the DNA replication rate, as recently measured with single-molecule techniques. SSB is a large ligand presenting cooperativity in some of its binding modes. We aim to develop an accurate kinetic model for the cooperative binding kinetics of large ligands. Cooperativity accounts for the changes in the affinity of a ligand to the polymer due to the presence of another bound ligand. Large ligands, attaching to several binding sites, require a detailed counting of the available binding possibilities. This counting has been done by McGhee and von Hippel to obtain the equilibrium state of the ligands-polymer complex. The same procedure allows to obtain the kinetic equations for the cooperative binding of ligands to long polymers, for all ligand sizes. Here, we also derive approximate cooperative kinetic equations in the large ligand limit, at the leading and next-to-leading orders. We found cooperativity is negligible at the leading-order, and appears at the next-to-leading order. Positive cooperativity (increased affinity) can be originated by increased binding affinity or by decreased release affinity, implying different kinetics. Nevertheless, the equilibrium state is independent of the origin of cooperativity and only depends on the overall increase in affinity. Next-to-leading approximation is found to be accurate, particularly for small cooperativity. These results allow to understand and characterize relevant ligand binding processes, as the binding kinetics of SSB to ssDNA, which has been reported to affect the DNA replication rate for several SSB-polymerase pairs.
Collapse
Affiliation(s)
- Juan P.G. Villaluenga
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
- Corresponding author.
| | - Francisco Javier Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Plaza de Ciencias, 1, 28040 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Calle Faraday, 9, 28049 Madrid, Spain
| |
Collapse
|
7
|
Blevins MS, Walker JN, Schaub JM, Finkelstein IJ, Brodbelt JS. Characterization of the T4 gp32-ssDNA complex by native, cross-linking, and ultraviolet photodissociation mass spectrometry. Chem Sci 2021; 12:13764-13776. [PMID: 34760161 PMCID: PMC8549804 DOI: 10.1039/d1sc02861h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Protein-DNA interactions play crucial roles in DNA replication across all living organisms. Here, we apply a suite of mass spectrometry (MS) tools to characterize a protein-ssDNA complex, T4 gp32·ssDNA, with results that both support previous studies and simultaneously uncover novel insight into this non-covalent biological complex. Native mass spectrometry of the protein reveals the co-occurrence of Zn-bound monomers and homodimers, while addition of differing lengths of ssDNA generates a variety of protein:ssDNA complex stoichiometries (1 : 1, 2 : 1, 3 : 1), indicating sequential association of gp32 monomers with ssDNA. Ultraviolet photodissociation (UVPD) mass spectrometry allows characterization of the binding site of the ssDNA within the protein monomer via analysis of holo ions, i.e. ssDNA-containing protein fragments, enabling interrogation of disordered regions of the protein which are inaccessible via traditional crystallographic techniques. Finally, two complementary cross-linking (XL) approaches, bottom-up analysis of the crosslinked complexes as well as MS1 analysis of the intact complexes, are used to showcase the absence of ssDNA binding with the intact cross-linked homodimer and to generate two homodimer gp32 model structures which highlight that the homodimer interface overlaps with the monomer ssDNA-binding site. These models suggest that the homodimer may function in a regulatory capacity by controlling the extent of ssDNA binding of the protein monomer. In sum, this work underscores the utility of a multi-faceted mass spectrometry approach for detailed investigation of non-covalent protein-DNA complexes.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
8
|
Israels B, Albrecht CS, Dang A, Barney M, von Hippel PH, Marcus AH. Submillisecond Conformational Transitions of Short Single-Stranded DNA Lattices by Photon Correlation Single-Molecule Förster Resonance Energy Transfer. J Phys Chem B 2021; 125:9426-9440. [PMID: 34379430 DOI: 10.1021/acs.jpcb.1c04119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thermally driven conformational fluctuations (or "breathing") of DNA play important roles in the function and regulation of the "macromolecular machinery of genome expression." Fluctuations in double-stranded (ds) DNA are involved in the transient exposure of pathways to protein binding sites within the DNA framework, leading to the binding of regulatory proteins to single-stranded (ss) DNA templates. These interactions often require that the ssDNA sequences, as well as the proteins involved, assume transient conformations critical for successful binding. Here, we use microsecond-resolved single-molecule Förster resonance energy transfer (smFRET) experiments to investigate the backbone fluctuations of short [oligo(dT)n] templates within DNA constructs that also serve as models for ss-dsDNA junctions. Such junctions, together with the attached ssDNA sequences, are involved in interactions with the ssDNA binding (ssb) proteins that control and integrate the functions of DNA replication complexes. We analyze these data using a chemical network model based on multiorder time-correlation functions and probability distribution functions that characterize the kinetic and thermodynamic behavior of the system. We find that the oligo(dT)n tails of ss-dsDNA constructs interconvert, on submillisecond time scales, between three macrostates with distinctly different end-to-end distances. These are (i) a "compact" macrostate that represents the dominant species at equilibrium; (ii) a "partially extended" macrostate that exists as minority species; and (iii) a "highly extended" macrostate that is present in trace amounts. We propose a model for ssDNA secondary structure that advances our understanding of how spontaneously formed nucleic acid conformations may facilitate the activities of ssDNA-associating proteins.
Collapse
Affiliation(s)
- Brett Israels
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States.,Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403, United States
| | - Claire S Albrecht
- Department of Physics, Center for Optical, Molecular and Quantum Science, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Anson Dang
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Megan Barney
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Peter H von Hippel
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States.,Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403, United States.,Department of Physics, Center for Optical, Molecular and Quantum Science, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|