1
|
Cherepanov DA, Petrova AA, Fadeeva MS, Gostev FE, Shelaev IV, Nadtochenko VA, Semenov AY. Specificity of Photochemical Energy Conversion in Photosystem I from the Green Microalga Chlorella ohadii. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1133-1145. [PMID: 38981706 DOI: 10.1134/s0006297924060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/11/2024]
Abstract
Primary excitation energy transfer and charge separation in photosystem I (PSI) from the extremophile desert green alga Chlorella ohadii grown in low light were studied using broadband femtosecond pump-probe spectroscopy in the spectral range from 400 to 850 nm and in the time range from 50 fs to 500 ps. Photochemical reactions were induced by the excitation into the blue and red edges of the chlorophyll Qy absorption band and compared with similar processes in PSI from the cyanobacterium Synechocystis sp. PCC 6803. When PSI from C. ohadii was excited at 660 nm, the processes of energy redistribution in the light-harvesting antenna complex were observed within a time interval of up to 25 ps, while formation of the stable radical ion pair P700+A1- was kinetically heterogeneous with characteristic times of 25 and 120 ps. When PSI was excited into the red edge of the Qy band at 715 nm, primary charge separation reactions occurred within the time range of 7 ps in half of the complexes. In the remaining complexes, formation of the radical ion pair P700+A1- was limited by the energy transfer and occurred with a characteristic time of 70 ps. Similar photochemical reactions in PSI from Synechocystis 6803 were significantly faster: upon excitation at 680 nm, formation of the primary radical ion pairs occurred with a time of 3 ps in ~30% complexes. Excitation at 720 nm resulted in kinetically unresolvable ultrafast primary charge separation in 50% complexes, and subsequent formation of P700+A1- was observed within 25 ps. The photodynamics of PSI from C. ohadii was noticeably similar to the excitation energy transfer and charge separation in PSI from the microalga Chlamydomonas reinhardtii; however, the dynamics of energy transfer in C. ohadii PSI also included slower components.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasiya A Petrova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mariya S Fadeeva
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Fedor E Gostev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey Yu Semenov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
2
|
van Stokkum IHM, Müller MG, Holzwarth AR. Energy Transfer and Radical-Pair Dynamics in Photosystem I with Different Red Chlorophyll a Pigments. Int J Mol Sci 2024; 25:4125. [PMID: 38612934 PMCID: PMC11012434 DOI: 10.3390/ijms25074125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.
Collapse
Affiliation(s)
- Ivo H. M. van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
| | - Marc G. Müller
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| | - Alfred R. Holzwarth
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
- Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim a.d. Ruhr, Germany;
| |
Collapse
|
3
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
4
|
Brady NG, Qian S, Nguyen J, O'Neill HM, Bruce BD. Small angle neutron scattering and lipidomic analysis of a native, trimeric PSI-SMALP from a thermophilic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148596. [PMID: 35853496 PMCID: PMC10228149 DOI: 10.1016/j.bbabio.2022.148596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The use of styrene-maleic acid copolymers (SMAs) to produce membrane protein-containing nanodiscs without the initial detergent isolation has gained significant interest over the last decade. We have previously shown that a Photosystem I SMALP from the thermophilic cyanobacterium, Thermosynechococcus elongatus (PSI-SMALP), has much more rapid energy transfer and charge separation in vitro than detergent isolated PSI complexes. In this study, we have utilized small-angle neutron scattering (SANS) to better understand the geometry of these SMALPs. These techniques allow us to investigate the size and shape of these particles in their fully solvated state. Further, the particle's proteolipid core and detergent shell or copolymer belt can be interrogated separately using contrast variation, a capability unique to SANS. Here we report the dimensions of the Thermosynechococcus elongatus PSI-SMALP containing a PSI trimer. At ~1.5 MDa, PSI-SMALP is the largest SMALP to be isolated; our lipidomic analysis indicates it contains ~1300 lipids/per trimeric particle, >40-fold more than the PSI-DDM particle and > 100 fold more than identified in the 1JB0 crystal structure. Interestingly, the lipid composition to the PSI trimer in the PSI-SMALP differs significantly from bulk thylakoid composition, being enriched ~50 % in the anionic sulfolipid, SQDG. Finally, utilizing the contrast match point for the SMA 1440 copolymer, we also can observe the ~1 nm SMA copolymer belt surrounding this SMALP for the first time, consistent with most models of SMA organization.
Collapse
Affiliation(s)
- Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jon Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
5
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
6
|
Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Karlova MG, Yudenko A, Remeeva A, Ryzhykau YL, Gushchin I, Gordeliy VI, Sokolova OS, Steinhoff HJ, Kirpichnikov MP, Shaitan KV. Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:361. [PMID: 35159706 PMCID: PMC8838559 DOI: 10.3390/nano12030361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia Voskoboynikova
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Valentin I. Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| |
Collapse
|
7
|
Broadbent L, Depping P, Lodé A, Vaitsopoulou A, Hardy D, Ayub H, Mitchell-White J, Kerr ID, Goddard AD, Bill RM, Rothnie AJ. Detergent-Free Membrane Protein Purification Using SMA Polymer. Methods Mol Biol 2022; 2507:389-404. [PMID: 35773594 DOI: 10.1007/978-1-0716-2368-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the big challenges for the study of structure and function of membrane proteins is the need to extract them from the membrane. Traditionally this was achieved using detergents which disrupt the membrane and form a micelle around the protein, but this can cause issues with protein function and/or stability. In 2009 an alternative approach was reported, using styrene maleic acid (SMA) copolymer to extract small discs of lipid bilayer encapsulated by the polymer and termed SMALPs (SMA lipid particles). Since then this approach has been shown to work for a range of different proteins from many different expression systems. It allows the extraction and purification of a target protein while maintaining a lipid bilayer environment. Recently this has led to several new high-resolution structures and novel insights to function. As with any method there are some limitations and issues to be aware of. Here we describe a standard protocol for preparation of the polymer and its use for membrane protein purification, and also include details of typical challenges that may be encountered and possible ways to address those.
Collapse
Affiliation(s)
- Luke Broadbent
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Peer Depping
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Alexis Lodé
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | | | - David Hardy
- College of Health & Life Sciences, Aston University, Birmingham, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Hoor Ayub
- College of Health & Life Sciences, Aston University, Birmingham, UK
- Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| | - James Mitchell-White
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Alan D Goddard
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Roslyn M Bill
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Alice J Rothnie
- College of Health & Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
8
|
Hawkins OP, Jahromi CPT, Gulamhussein AA, Nestorow S, Bahra T, Shelton C, Owusu-Mensah QK, Mohiddin N, O'Rourke H, Ajmal M, Byrnes K, Khan M, Nahar NN, Lim A, Harris C, Healy H, Hasan SW, Ahmed A, Evans L, Vaitsopoulou A, Akram A, Williams C, Binding J, Thandi RK, Joby A, Guest A, Tariq MZ, Rasool F, Cavanagh L, Kang S, Asparuhov B, Jestin A, Dafforn TR, Simms J, Bill RM, Goddard AD, Rothnie AJ. Membrane protein extraction and purification using partially-esterified SMA polymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183758. [PMID: 34480878 PMCID: PMC8484863 DOI: 10.1016/j.bbamem.2021.183758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Styrene maleic acid (SMA) polymers have proven to be very successful for the extraction of membrane proteins, forming SMA lipid particles (SMALPs), which maintain a lipid bilayer around the membrane protein. SMALP-encapsulated membrane proteins can be used for functional and structural studies. The SMALP approach allows retention of important protein-annular lipid interactions, exerts lateral pressure, and offers greater stability than traditional detergent solubilisation. However, SMA polymer does have some limitations, including a sensitivity to divalent cations and low pH, an absorbance spectrum that overlaps with many proteins, and possible restrictions on protein conformational change. Various modified polymers have been developed to try to overcome these challenges, but no clear solution has been found. A series of partially-esterified variants of SMA (SMA 2625, SMA 1440 and SMA 17352) has previously been shown to be highly effective for solubilisation of plant and cyanobacterial thylakoid membranes. It was hypothesised that the partial esterification of maleic acid groups would increase tolerance to divalent cations. Therefore, these partially-esterified polymers were tested for the solubilisation of lipids and membrane proteins, and their tolerance to magnesium ions. It was found that all partially esterified polymers were capable of solubilising and purifying a range of membrane proteins, but the yield of protein was lower with SMA 1440, and the degree of purity was lower for both SMA 1440 and SMA 17352. SMA 2625 performed comparably to SMA 2000. SMA 1440 also showed an increased sensitivity to divalent cations. Thus, it appears the interactions between SMA and divalent cations are more complex than proposed and require further investigation.
Collapse
Affiliation(s)
- Olivia P Hawkins
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | | - Aiman A Gulamhussein
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephanie Nestorow
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Taranpreet Bahra
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Christian Shelton
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Quincy K Owusu-Mensah
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Naadiya Mohiddin
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Hannah O'Rourke
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mariam Ajmal
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kara Byrnes
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Madiha Khan
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Nila N Nahar
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Arcella Lim
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Cassandra Harris
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Hannah Healy
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Syeda W Hasan
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Asma Ahmed
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lora Evans
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Afroditi Vaitsopoulou
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Aneel Akram
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Chris Williams
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Johanna Binding
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Rumandeep K Thandi
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Aswathy Joby
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ashley Guest
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mohammad Z Tariq
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Farah Rasool
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Luke Cavanagh
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Simran Kang
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Biser Asparuhov
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Aleksandr Jestin
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John Simms
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alan D Goddard
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
9
|
Cherepanov DA, Shelaev IV, Gostev FE, Nadtochenko VA, Xu W, Golbeck JH, Semenov AY. Symmetry breaking in photosystem I: ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors. Photochem Photobiol Sci 2021; 20:1209-1227. [PMID: 34478050 DOI: 10.1007/s43630-021-00094-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Femtosecond absorption spectroscopy of Photosystem I (PS I) complexes from the cyanobacterium Synechocystis sp. PCC 6803 was carried out on three pairs of complementary amino acid substitutions located near the second pair of chlorophyll molecules Chl2A and Chl2B (also termed A-1A and A-1B). The absorption dynamics at delays of 0.1-500 ps were analyzed by decomposition into discrete decay-associated spectra and continuously distributed exponential components. The multi-exponential deconvolution of the absorption changes revealed that the electron transfer reactions in the PsaA-N600M, PsaA-N600H, and PsaA-N600L variants near the B-branch of cofactors are similar to those of the wild type, while the PsaB-N582M, PsaB-N582H, and PsaB-N582L variants near the A-branch of cofactors cause significant alterations of the photochemical processes, making them heterogeneous and poorly described by a discrete exponential kinetic model. A redistribution of the unpaired electron between the second and the third monomers Chl2A/Chl2B and Chl3A/Chl3B was identified in the time range of 9-20 ps, and the subsequent reduction of A1 was identified in the time range of 24-70 ps. In the PsaA-N600L and PsaB-N582H/L variants, the reduction of A1 occurred with a decreased quantum yield of charge separation. The decreased quantum yield correlates with a slowing of the phylloquinone A0 → A1 reduction, but not with the initial transient spectra measured at the shortest time delay. The results support a branch competition model, where the electron is sheared between Chl2A-Chl3A and Chl2B-Chl3B cofactors before its transfer to phylloquinone in either A1A or A1B sites.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russian Federation
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16801, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| |
Collapse
|
10
|
Biological insights from SMA-extracted proteins. Biochem Soc Trans 2021; 49:1349-1359. [PMID: 34110372 PMCID: PMC8286838 DOI: 10.1042/bst20201067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
In the twelve years since styrene maleic acid (SMA) was first used to extract and purify a membrane protein within a native lipid bilayer, this technological breakthrough has provided insight into the structural and functional details of protein–lipid interactions. Most recently, advances in cryo-EM have demonstrated that SMA-extracted membrane proteins are a rich-source of structural data. For example, it has been possible to resolve the details of annular lipids and protein–protein interactions within complexes, the nature of lipids within central cavities and binding pockets, regions involved in stabilising multimers, details of terminal residues that would otherwise remain unresolved and the identification of physiologically relevant states. Functionally, SMA extraction has allowed the analysis of membrane proteins that are unstable in detergents, the characterization of an ultrafast component in the kinetics of electron transfer that was not possible in detergent-solubilised samples and quantitative, real-time measurement of binding assays with low concentrations of purified protein. While the use of SMA comes with limitations such as its sensitivity to low pH and divalent cations, its major advantage is maintenance of a protein's lipid bilayer. This has enabled researchers to view and assay proteins in an environment close to their native ones, leading to new structural and mechanistic insights.
Collapse
|
11
|
Brady NG, Workman CE, Cawthon B, Bruce BD, Long BK. Protein Extraction Efficiency and Selectivity of Esterified Styrene-Maleic Acid Copolymers in Thylakoid Membranes. Biomacromolecules 2021; 22:2544-2553. [PMID: 34038122 DOI: 10.1021/acs.biomac.1c00274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphiphilic styrene-maleic acid copolymers (SMAs) have been shown to effectively extract membrane proteins surrounded by an annulus of native membrane lipids via the formation of nanodiscs. Recent reports have shown that 2-butoxyethanol-functionalized SMA derivatives promote the extraction of membrane proteins from thylakoid membranes, whereas unfunctionalized SMA is essentially ineffective. However, it is unknown how the extent of functionalization and identity of sidechains impact protein solubilization and specificity. Herein, we show that the monoesterification of an SMA polymer with hydrophobic alkoxy ethoxylate sidechains leads to an increased solubilization efficiency (SE) of trimeric photosystem I (PSI) from the membranes of cyanobacterium Thermosynechococcus elongatus. The specific SMA polymer used in this study, PRO 10235, cannot encapsulate single PSI trimers from this cyanobacterium; however, as it is functionalized with alkoxy ethoxylates of increasing alkoxy chain length, a clear increase in the trimeric PSI SE is observed. Furthermore, an exponential increase in the SE is observed when >50% of the maleic acid repeat units are monoesterified with long alkoxy ethoxylates, suggesting that the PSI extraction mechanism is highly dependent on both the number and length of the attached side chains.
Collapse
Affiliation(s)
- Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996-1939, Tennessee, United States
| | - Cameron E Workman
- Department of Chemistry, University of Tennessee, Knoxville 37996-1600, Tennessee, United States
| | - Bridgie Cawthon
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville 37996-0840, Tennessee, United States
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996-1939, Tennessee, United States.,Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville 37996-0840, Tennessee, United States
| | - Brian K Long
- Department of Chemistry, University of Tennessee, Knoxville 37996-1600, Tennessee, United States
| |
Collapse
|
12
|
Bjørnestad V, Orwick-Rydmark M, Lund R. Understanding the Structural Pathways for Lipid Nanodisc Formation: How Styrene Maleic Acid Copolymers Induce Membrane Fracture and Disc Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6178-6188. [PMID: 33979520 PMCID: PMC8280715 DOI: 10.1021/acs.langmuir.1c00304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Lipid nanodiscs formed by mixtures of styrene maleic acid (SMA) copolymers and lipid membranes are important tools for studying membrane proteins in many biotechnological applications. However, molecular interactions leading up to their formation are not well understood. Here, we elucidate the nanodisc formation pathways for SMA/lipid vesicle mixtures using small-angle X-ray scattering (SAXS) that allows detailed in situ nanostructural information. SMA copolymer that is initially aggregated in solution inserts its styrene units into the lipid bilayer hydrocarbon region, leading to fractures in the membrane. The initial copolymer-lipid interactions observed in the vesicles are also present in the formed discs, with excess copolymer distributed along the normal of the bilayer. The size and SMA distribution in the resulting discs strongly depend on the temperature, lipid/copolymer ratio, and lipid type. We find that the solubilization limit increases for membranes above the melting point, suggesting that defects in gel-like lipid membranes play a significant role in membrane fracturing and nanodisc formation. These findings provide unique insights into the formation of nanodiscs as well as into the microscopic mechanism of solubilization, which plays an important role in many applications and products ranging from household goods to biotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Reidar Lund
- Department
of Chemistry, University of Oslo, Sem Sælandsvei 26, 0371 Oslo, Norway
| |
Collapse
|
13
|
Brown CJ, Trieber C, Overduin M. Structural biology of endogenous membrane protein assemblies in native nanodiscs. Curr Opin Struct Biol 2021; 69:70-77. [PMID: 33915422 DOI: 10.1016/j.sbi.2021.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 01/17/2023]
Abstract
The advent of amphiphilic copolymers enables integral membrane proteins to be solubilized into stable 10-30 nm native nanodiscs to resolve their multisubunit structures, post-translational modifications, endogenous lipid bilayers, and small molecule ligands. This breakthrough has positioned biological membrane:protein assemblies (memteins) as fundamental functional units of cellular membranes. Herein, we review copolymer design strategies and methods for the characterization of transmembrane proteins within native nanodiscs by cryo-electron microscopy (cryo-EM), transmission electron microscopy, nuclear magnetic resonance spectroscopy, electron paramagnetic resonance, X-ray diffraction, surface plasmon resonance, and mass spectrometry.
Collapse
Affiliation(s)
- Chanelle J Brown
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, USA
| | - Catharine Trieber
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
14
|
Guo R, Sumner J, Qian S. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a “Stealth” Membrane-Mimetic for Membrane Protein Research. ACS APPLIED BIO MATERIALS 2021; 4:4760-4768. [DOI: 10.1021/acsabm.0c01626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Guo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Grinnell College, Grinnell, Iowa 50112, United States
| | - Jacob Sumner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Korotych OI, Nguyen TT, Reagan BC, Burch-Smith TM, Bruce BD. Poly(styrene-co-maleic acid)-mediated isolation of supramolecular membrane protein complexes from plant thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148347. [PMID: 33253667 DOI: 10.1016/j.bbabio.2020.148347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 11/21/2020] [Indexed: 12/25/2022]
Abstract
Derivatives of poly(styrene-co-maleic acid) (pSMA), have recently emerged as effective reagents for extracting membrane protein complexes from biological membranes. Despite recent progress in using SMAs to study artificial and bacterial membranes, very few reports have addressed their use in studying the highly abundant and well characterized thylakoid membranes. Recently, we tested the ability of twelve commercially available SMA copolymers with different physicochemical properties to extract membrane protein complexes (MPCs) from spinach thylakoid membrane. Based on the efficacy of both protein and chlorophyll extraction, we have found five highly efficient SMA copolymers: SMA® 1440, XIRAN® 25010, XIRAN® 30010, SMA® 17352, and SMA® PRO 10235, that show promise in extracting MPCs from chloroplast thylakoids. To further advance the application of these polymers for studying biomembrane organization, we have examined the composition of thylakoid supramolecular protein complexes extracted by the five SMA polymers mentioned above. Two commonly studied plants, spinach (Spinacia oleracea) and pea (Pisum sativum), were used for extraction as model biomembranes. We found that the pSMAs differentially extract protein complexes from spinach and pea thylakoids. Based on their differential activity, which correlates with the polymer chemical structure, pSMAs can be divided into two groups: unfunctionalized polymers and ester derivatives.
Collapse
Affiliation(s)
- Olena I Korotych
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, United States of America
| | - Thao T Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, United States of America
| | - Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, United States of America
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, United States of America
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, United States of America; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, TN 37996, United States of America.
| |
Collapse
|
16
|
Cherepanov DA, Shelaev IV, Gostev FE, Petrova A, Aybush AV, Nadtochenko VA, Xu W, Golbeck JH, Semenov AY. Primary charge separation within the structurally symmetric tetrameric Chl 2AP AP BChl 2B chlorophyll exciplex in photosystem I. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112154. [PMID: 33636482 DOI: 10.1016/j.jphotobiol.2021.112154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022]
Abstract
In Photosystem I (PS I), the role of the accessory chlorophyll (Chl) molecules, Chl2A and Chl2B (also termed A-1A and A-1B), which are directly adjacent to the special pair P700 and fork into the A- and B-branches of electron carriers, is incompletely understood. In this work, the Chl2A and Chl2B transient absorption ΔA0(λ) at a time delay of 100 fs was identified by ultrafast pump-probe spectroscopy in three pairs of PS I complexes from Synechocystis sp. PCC 6803 with residues PsaA-N600 or PsaB-N582 (which ligate Chl2B or Chl2A through a H2O molecule) substituted by Met, His, and Leu. The ΔA0(λ) spectra were quantified using principal component analysis, the main component of which was interpreted as a mutation-induced shift of the equilibrium between the excited state of primary donor P700⁎ and the primary charge-separated state P700+Chl2-. This equilibrium is shifted to the charge-separated state in wild-type PS I and to the excited P700 in the PS I complexes with the substituted ligands to the Chl2A and Chl2B monomers. The results can be rationalized within the framework of an adiabatic model in which the P700 is electronically coupled with the symmetrically arranged monomers Chl2A and Chl2B; such a structure can be considered a symmetric tetrameric exciplex Chl2APAPBChl2B, in which the excited state (Chl2APAPBChl2B)* is mixed with two charge-transfer states P700+Chl2A- and P700+Chl2B-. The electron redistribution between the two branches in favor of the A-branch apparently takes place in the picosecond time scale after reduction of the Chl2A and Chl2B monomers.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Anastasia Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskie gory, 1, Building 40, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskie gory, 1, Building 40, Russia
| |
Collapse
|
17
|
Smitienko OA, Feldman TB, Petrovskaya LE, Nekrasova OV, Yakovleva MA, Shelaev IV, Gostev FE, Cherepanov DA, Kolchugina IB, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J Phys Chem B 2021; 125:995-1008. [PMID: 33475375 DOI: 10.1021/acs.jpcb.0c07763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.
Collapse
Affiliation(s)
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Oksana V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Ivan V Shelaev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | | | - Irina B Kolchugina
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Dolgikh
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
18
|
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shuvalov VA, Semenov AY, Nadtochenko VA. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 146:55-73. [PMID: 32144697 DOI: 10.1007/s11120-020-00731-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 05/09/2023]
Abstract
The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm. The excitation of high-energy chlorophyll in light-harvesting antenna of both species was not accompanied by immediate appearance of an electrochromic shift. In PS I from T. elongatus, the excitation of long-wavelength chlorophyll (LWC) caused a pronounced electrochromic effect at 502 nm assigned to the appearance of CT states of chlorophyll exciplexes. The formation of ion-radical pair P700+A1- at 40 ps was limited by energy transfer from LWC to the primary donor P700 and accompanied by carotenoid bleach at 498 nm. In PS I from Synechocystis 6803, the excitation at 720 nm produced an immediate bidentate bleach at 690/704 nm and synchronous carotenoid response at 508 nm. The bidentate bleach was assigned to the formation of primary ion-radical state PB+Chl2B-, where negative charge is localized predominantly at the accessory chlorophyll molecule in the branch B, Chl2B. The following decrease of carotenoid signal at ~ 5 ps was ascribed to electron transfer to the more distant molecule Chl3B. The reduction of phylloquinone in the sites A1A and A1B was accompanied by a synchronous blue-shift of the carotenoid response to 498 nm, pointing to fast redistribution of unpaired electron between two branches in favor of the state PB+A1A-.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Vladimir A Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Abstract
The biological process of photosynthesis was critical in catalyzing the oxygenation of Earth’s atmosphere 2.5 billion years ago, changing the course of development of life on Earth. Recently, the fields of applied and synthetic photosynthesis have utilized the light-driven protein–pigment supercomplexes central to photosynthesis for the photocatalytic production of fuel and other various valuable products. The reaction center Photosystem I is of particular interest in applied photosynthesis due to its high stability post-purification, non-geopolitical limitation, and its ability to generate the greatest reducing power found in nature. These remarkable properties have been harnessed for the photocatalytic production of a number of valuable products in the applied photosynthesis research field. These primarily include photocurrents and molecular hydrogen as fuels. The use of artificial reaction centers to generate substrates and reducing equivalents to drive non-photoactive enzymes for valuable product generation has been a long-standing area of interest in the synthetic photosynthesis research field. In this review, we cover advances in these areas and further speculate synthetic and applied photosynthesis as photocatalysts for the generation of valuable products.
Collapse
|
20
|
Teodor AH, Bruce BD. Putting Photosystem I to Work: Truly Green Energy. Trends Biotechnol 2020; 38:1329-1342. [PMID: 32448469 DOI: 10.1016/j.tibtech.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Meeting growing energy demands sustainably is one of the greatest challenges facing the world. The sun strikes the Earth with sufficient energy in 1.5 h to meet annual world energy demands, likely making solar energy conversion part of future sustainable energy production plans. Photosynthetic organisms have been evolving solar energy utilization strategies for nearly 3.5 billion years, making reaction centers including the remarkably stable Photosystem I (PSI) especially interesting for biophotovoltaic device integration. Although these biohybrid devices have steadily improved, their output remains low compared with traditional photovoltaics. We discuss strategies and methods to improve PSI-based biophotovoltaics, focusing on PSI-surface interaction enhancement, electrolytes, and light-harvesting enhancement capabilities. Desirable features and current drawbacks to PSI-based devices are also discussed.
Collapse
Affiliation(s)
- Alexandra H Teodor
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Barry D Bruce
- Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
21
|
Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148184. [PMID: 32179058 DOI: 10.1016/j.bbabio.2020.148184] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
The Photosystem I (PSI) reaction center in cyanobacteria is comprised of ~96 chlorophyll (Chl) molecules, including six specialized Chl molecules denoted Chl1A/Chl1B (P700), Chl2A/Chl2B, and Chl3A/Chl3B that are arranged in two branches and function in primary charge separation. It has recently been proposed that PSI from Chroococcidiopsis thermalis (Nürnberg et al. (2018) Science 360, 1210-1213) and Fischerella thermalis PCC 7521 (Hastings et al. (2019) Biochim. Biophys. Acta 1860, 452-460) contain Chl f in the positions Chl2A/Chl2B. We tested this proposal by exciting RCs from white-light grown (WL-PSI) and far-red light grown (FRL-PSI) F. thermalis PCC 7521 with femtosecond pulses and analyzing the optical dynamics. If Chl f were in the position Chl2A/Chl2B in FRL-PSI, excitation at 740 nm should have produced the charge-separated state P700+A0- followed by electron transfer to A1 with a τ of ≤25 ps. Instead, it takes ~230 ps for the charge-separated state to develop because the excitation migrates uphill from Chl f in the antenna to the trapping center. Further, we observe a strong electrochromic shift at 685 nm in the final P700+A1- spectrum that can only be explained if Chl a is in the positions Chl2A/Chl2B. Similar arguments rule out the presence of Chl f in the positions Chl3A/Chl3B; hence, Chl f is likely to function solely as an antenna pigment in FRL-PSI. We additionally report the presence of an excitonically coupled homo- or heterodimer of Chl f absorbing around 790 nm that is kinetically independent of the Chl f population that absorbs around 740 nm.
Collapse
|