1
|
Zablotskii V, Polyakova T, Dejneka A. Exploring Ion Channel Magnetic Pharmacology: Are Magnetic Cues a Viable Alternative to Ion Channel Drugs? Bioessays 2025; 47:e202400200. [PMID: 39651810 PMCID: PMC11848120 DOI: 10.1002/bies.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
We explore the potential of using magnetic cues as a novel approach to modulating ion channel expression, which could provide an alternative to traditional pharmacological interventions. Ion channels are crucial targets for pharmacological therapies, and ongoing research in this field continues to introduce new methods for treating various diseases. However, the efficacy of ion channel drugs is often compromised by issues such as target selectivity, leading to side effects, toxicity, and complex drug interactions. These challenges, along with problems like drug resistance and difficulties in crossing biological barriers, highlight the need for innovative strategies. In this context, the proposed use of magnetic cues to modulate ion channel expression may offer a promising solution to address these limitations, potentially improving the safety and effectiveness of treatments, particularly for long-term use. Key developments in this area are reviewed, the relationships between changes in ion channel expression and magnetic fields are summarized, knowledge gaps are identified, and central issues relevant to future research are discussed.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
2
|
Zablotskii V, Gorobets O, Gorobets S, Polyakova T. Effects of Static and Low-Frequency Magnetic Fields on Gene Expression. J Magn Reson Imaging 2025. [PMID: 39887550 DOI: 10.1002/jmri.29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Substantial research over the past two decades has established that magnetic fields affect fundamental cellular processes, including gene expression. However, since biological cells and subcellular components exhibit diamagnetic behavior and are therefore subjected to very small magnetic forces that cannot directly compete with the viscoelastic and bioelectric intracellular forces responsible for cellular machinery functions, it becomes challenging to understand cell-magnetic field interactions and to reveal the mechanisms through which these interactions differentially influence gene expression in cells. The limited understanding of the molecular mechanisms underlying biomagnetic effects has hindered progress in developing effective therapeutic applications of magnetic fields. This review examines the expanding body of literature on genetic events during static and low-frequency magnetic field exposure, focusing particularly on how changes in gene expression interact with cellular machinery. To address this, we conducted a systematic review utilizing extensive search strategies across multiple databases. We explore the intracellular mechanisms through which transcription functions may be modified by a magnetic field in contexts where other cellular signaling pathways are also activated by the field. This review summarizes key findings in the field, outlines the connections between magnetic fields and gene expression changes, identifies critical gaps in current knowledge, and proposes directions for future research. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| | - Oksana Gorobets
- Faculty of Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Svitlana Gorobets
- Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Tatyana Polyakova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Tian X, Zhang H, Wang X, Chen G, Ji X, Yu B, Zhang L, Song C, Xi C, Ren D, Zhang X. Effects of 16.8-22.0 T high static magnetic fields on the development of zebrafish in early fertilization. Eur Radiol 2024; 34:7211-7221. [PMID: 38844619 DOI: 10.1007/s00330-024-10819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES Despite some existing studies on the safety of high static magnetic fields (SMFs), the effects of ultra-high SMFs above 20.0 T for embryonic development in early pregnancy are absent. The objective of this study is to evaluate the influence of 16.8-22.0 T SMF on the development of zebrafish embryos, which will provide important information for the future application of ultra-high field magnetic resonance imaging (MRI). METHODS Two-hour exposure to homogenous (0 T/m) 22.0 T SMF, or 16.8 T SMFs with 123.25 T/m spatial gradient of opposite magnetic force directions was examined in the embryonic development of 200 zebrafish. Their body length, heart rate, spontaneous tail-wagging movement, hatching and survival rate, photomotor response, and visual motor response (VMR) were analyzed. RESULTS Our results show that these ultra-high SMFs did not significantly affect the general development of zebrafish embryos, such as the body length or spontaneous tail-wagging movement. However, the hatching rate was reduced by the gradient SMFs (p < 0.05), but not the homogenous 22.0 T SMF. Moreover, although the zebrafish larva activities were differentially affected by these ultra-high SMFs (p < 0.05), the expression of several visual and neurodevelopmental genes (p < 0.05) was generally downregulated in the eyeball. CONCLUSIONS Our findings suggest that exposure to ultra-high SMFs, especially the gradient SMFs, may have adverse effects on embryonic development, which should cause some attention to the future application of ultra-high field MRIs. CLINICAL RELEVANCE STATEMENT As technology advances, it is conceivable that very strong magnetic fields may be adapted for use in medical imaging. Possible dangers associated with these higher Tesla fields need to be considered and evaluated prior to human use. KEY POINTS Ultra-High static magnetic field may affect early embryonic development. High strength gradient static magnetic field exposure impacted zebrafish embryonic development. The application of very strong magnetic fields for MR technologies needs to be carefully evaluated.
Collapse
Affiliation(s)
- Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| | - Haoyi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Xinyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| | - Guofu Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China
| | - Xinmiao Ji
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui, P.R. China
| | - Biao Yu
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui, P.R. China
| | - Lei Zhang
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui, P.R. China
| | - Chao Song
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui, P.R. China
| | - Chuanying Xi
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui, P.R. China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, P.R. China.
- High Magnetic Field Laboratory of CAS (CHMFL), CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Hefei, Anhui, P.R. China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui, P.R. China.
| |
Collapse
|
4
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
5
|
Xie W, Song C, Guo R, Zhang X. Static magnetic fields in regenerative medicine. APL Bioeng 2024; 8:011503. [PMID: 38486824 PMCID: PMC10939708 DOI: 10.1063/5.0191803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
All organisms on Earth live in the weak but ubiquitous geomagnetic field. Human beings are also exposed to magnetic fields generated by multiple sources, ranging from permanent magnets to magnetic resonance imaging (MRI) in hospitals. It has been shown that different magnetic fields can generate various effects on different tissues and cells. Among them, stem cells appear to be one of the most sensitive cell types to magnetic fields, which are the fundamental units of regenerative therapies. In this review, we focus on the bioeffects of static magnetic fields (SMFs), which are related to regenerative medicine. Most reports in the literature focus on the influence of SMF on bone regeneration, wound healing, and stem cell production. Multiple aspects of the cellular events, including gene expression, cell signaling pathways, reactive oxygen species, inflammation, and cytoskeleton, have been shown to be affected by SMFs. Although no consensus yet, current evidence indicates that moderate and high SMFs could serve as a promising physical tool to promote bone regeneration, wound healing, neural differentiation, and dental regeneration. All in vivo studies of SMFs on bone regeneration and wound healing have shown beneficial effects, which unravel the great potential of SMFs in these aspects. More mechanistic studies, magnetic field parameter optimization, and clinical investigations on human bodies will be imperative for the successful clinical applications of SMFs in regenerative medicine.
Collapse
Affiliation(s)
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin Zhang
- Author to whom correspondence should be addressed:. Tel.: 86–551-65593356
| |
Collapse
|
6
|
Zhang B, Li X, Zhou X, Lou C, Wang S, Lv H, Zhang G, Fang Y, Yin D, Shang P. Magneto-mechanical stimulation modulates osteocyte fate via the ECM-integrin-CSK axis and wnt pathway. iScience 2023; 26:107365. [PMID: 37554458 PMCID: PMC10405320 DOI: 10.1016/j.isci.2023.107365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Osteocytes are the mechano-sensors of bones. Large gradient high-static magnetic fields (LG-HMFs) produce stable, high-precision, and non-attenuation mechanical forces. We discovered that magnetic forces opposite to gravity inhibited MLO-Y4 osteocyte proliferation and viability by inducing structural damage and apoptosis. In contrast, magnetic force loading in the same direction as that of gravity promoted the proliferation and inhibited apoptosis of MLO-Y4 osteocytes. Differentially expressed gene (DEG) analysis after magnetic force stimulation indicated that the ECM-integrin-CSK axis responded most significantly to mechanical signals. Wisp2 was the most significant DEG between the 12 T upward and downward groups, showing the highest correlation with the Wnt pathway according to the STRING protein interaction database. Explaining the cellular and molecular mechanisms by which mechanical stimuli influence bone remodeling is currently the focus of osteocyte-related research. Our findings provide insights into the effects of LG-HMFs on bone cells, which have further implications in clinical practice.
Collapse
Affiliation(s)
- Bin Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xianglin Li
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaojie Zhou
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - ChenGe Lou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Department of Spine Surgery, Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen 518057, China
| | - Huanhuan Lv
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Gejing Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Huzhou 313300, China
| | - Dachuan Yin
- School of Life Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
7
|
Yu B, Liu J, Cheng J, Zhang L, Song C, Tian X, Fan Y, Lv Y, Zhang X. A Static Magnetic Field Improves Iron Metabolism and Prevents High-Fat-Diet/Streptozocin-Induced Diabetes. ACTA ACUST UNITED AC 2021; 2:100077. [PMID: 34557734 PMCID: PMC8454665 DOI: 10.1016/j.xinn.2021.100077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder with high prevalence and severe complications that has recently been indicated to be treatable by a combined static magnetic field (SMF) and electric field. We systematically compared four types of SMFs and found that a downward SMF of ∼100 mT could effectively reduce the development of hyperglycemia, fatty liver, weight gain, and tissue injury in high-fat-diet (HFD)/streptozocin-induced T2D mice, but not the upward SMF. The downward SMF markedly restored the Bacteroidetes population and reversed the iron complex outer membrane receptor gene reduction in the mice gut microbiota, and reduced iron deposition in the pancreas. SMF also reduced the labile iron and reactive oxygen species level in pancreatic Min6 cells in vitro and prevented palmitate-induced Min6 cell number reduction. Therefore, this simple SMF setting could partially prevent HFD-induced T2D development and ameliorate related symptoms, which could provide a low-cost and non-invasive physical method to prevent and/or treat T2D in the future.
Collapse
Affiliation(s)
- Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Jing Cheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Xiaofei Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yue Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
8
|
Magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing. Sci Rep 2020; 10:16418. [PMID: 33009486 PMCID: PMC7532536 DOI: 10.1038/s41598-020-73414-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
We demonstrate a proof of concept for magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing via two photon polymerization (LDW via TPP) of a photopolymerizable superparamagnetic composite. The composite consisted of a commercially available, biocompatible photopolymer (Ormocore) mixed with 4 mg/mL superparamagnetic nanoparticles (MNPs). The micromagnets were designed in the shape of squares with 70 µm lateral dimension. To minimize the role of topographical cues on the cellular attachment, we fabricated 2D microarrays similar with a chessboard: the superparamagnetic micromagnets alternated with non-magnetic areas of identical shape and lateral size as the micromagnets, made from Ormocore by LDW via TPP. The height difference between the superparamagnetic and non-magnetic areas was of ~ 6 µm. In the absence of a static magnetic field, MNPs-free fibroblasts attached uniformly on the entire 2D microarray, with no preference for the superparamagnetic or non-magnetic areas. Under a static magnetic field of 1.3 T, the fibroblasts attached exclusively on the superparamagnetic micromagnets, resulting a precise 2D cell organization on the chessboard-like microarray. The described method has significant potential for fabricating biocompatible micromagnets with well-defined geometries for building skin grafts adapted for optimum tissue integration, starting from single cell manipulation up to the engineering of whole tissues.
Collapse
|
9
|
Yaman S, Tekin HC. Magnetic Susceptibility-Based Protein Detection Using Magnetic Levitation. Anal Chem 2020; 92:12556-12563. [DOI: 10.1021/acs.analchem.0c02479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sena Yaman
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkey
- METU MEMS Center, Ankara 06520, Turkey
| |
Collapse
|