1
|
Shen M, Huang Y, Cai Z, Cherny VV, DeCoursey TE, Shen J. Interior pH-sensing residue of human voltage-gated proton channel H v1 is histidine 168. Biophys J 2024; 123:4211-4220. [PMID: 39054673 DOI: 10.1016/j.bpj.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/07/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms governing the human voltage-gated proton channel hHv1 remain elusive. Here, we used membrane-enabled hybrid-solvent continuous constant pH molecular dynamics (CpHMD) simulations with pH replica exchange to further evaluate the structural models of hHv1 in the closed (hyperpolarized) and open (depolarized) states recently obtained with MD simulations and explore potential pH-sensing residues. The CpHMD titration at a set of symmetric pH conditions revealed three residues that can gain or lose protons upon channel depolarization. Among them, residue H168 at the intracellular end of the S3 helix switches from the deprotonated to the protonated state and its protonation is correlated with the increased tilting of the S3 helix during the transition from the closed to the open state. Thus, the simulation data suggest H168 as an interior pH sensor, in support of a recent finding based on electrophysiological experiments of Hv1 mutants. We propose that protonation of H168 acts as a key that unlocks the closed channel configuration by increasing the flexibility of the S2-S3 linker, which increases the tilt angle of S3 and enhances the mobility of the S4 helix, thus promoting channel opening. Our work represents an important step toward deciphering the pH-dependent gating mechanism of hHv1.
Collapse
Affiliation(s)
- Mingzhe Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen, Fujian Province, China.
| | - Zhitao Cai
- College of Computer Engineering, Jimei University, Xiamen, Fujian Province, China
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland.
| |
Collapse
|
2
|
Comparison of Empirical Zn2+ Models in Protein–DNA Complexes. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Zinc ions are the second most abundant ions found in humans. Their role in proteins can be merely structural but also catalytic, owing to their transition metal character. Modelling their geometric–coordination versatility by empirical force fields is, thus, a challenging task. In this work, we evaluated three popular models, specifically designed to represent zinc ions with regard to their capability of preserving structural integrity. To this end, we performed molecular dynamics simulations of two zinc-containing protein–DNA complexes, which differed in their zinc coordination, i.e., four cysteines or two cysteines and two histidines. The most flexible non-bonded 12-6-4 Lennard–Jones-type model shows a preference for six-fold coordination of the Zn2+-ions in contradiction to the crystal structure. The cationic dummy atom model favours tetrahedral geometry, whereas the bonded extended zinc AMBER force field model, by construction, best preserves the initial geometry of a regular or slightly distorted tetrahedron. Our data renders the extended zinc AMBER force field the best model for structural zinc ions in a given geometry. In more complicated cases, though, more flexible models may be advantageous.
Collapse
|
3
|
El Chemaly A, Jaquet V, Cambet Y, Caillon A, Cherpin O, Balafa A, Krause KH, Demaurex N. Discovery and validation of new Hv1 proton channel inhibitors with onco-therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119415. [PMID: 36640925 DOI: 10.1016/j.bbamcr.2022.119415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
The voltage-gated hydrogen channel Hv1 encoded in humans by the HVCN1 gene is a highly selective proton channel that allows large fluxes of protons across biological membranes. Hv1 form functional dimers of four transmembrane spanning proteins resembling the voltage sensing domain of potassium channels. Each subunit is highly selective for protons and is controlled by changes in the transmembrane voltage and pH gradient. Hv1 is most expressed in phagocytic cells where it sustains NADPH oxidase-dependent bactericidal function and was reported to facilitate antibody production by B cells and to promote the maturation and motility of spermatocytes. Hv1 contributes to neuroinflammation following brain damage and favors cancer progression possibly by extruding protons generated during aerobic glycolysis of cancer cells. Lack of specific Hv1 inhibitors has hampered translation of this knowledge to treat immune, fertility, or malignancy diseases. In this study, we show that the genetic deletion of Hv1 delays tumor development in a mouse model of granulocytic sarcoma and report the discovery and characterization of two novel bioavailable inhibitors of Hv1 channels that we validate by orthogonal assays and electrophysiological recordings.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland; READs unit, University of Geneva, Geneva 1211, Switzerland
| | - Yves Cambet
- READs unit, University of Geneva, Geneva 1211, Switzerland
| | - Aurélie Caillon
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - Ophélie Cherpin
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - Alexia Balafa
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, University of Geneva, Geneva 1211, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
4
|
Chaves G, Ayuyan AG, Cherny VV, Morgan D, Franzen A, Fieber L, Nausch L, Derst C, Mahorivska I, Jardin C, DeCoursey TE, Musset B. Unexpected expansion of the voltage-gated proton channel family. FEBS J 2023; 290:1008-1026. [PMID: 36062330 PMCID: PMC10911540 DOI: 10.1111/febs.16617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Voltage-gated ion channels, whose first identified function was to generate action potentials, are divided into subfamilies with numerous members. The family of voltage-gated proton channels (HV ) is tiny. To date, all species found to express HV have exclusively one gene that codes for this unique ion channel. Here we report the discovery and characterization of three proton channel genes in the classical model system of neural plasticity, Aplysia californica. The three channels (AcHV 1, AcHV 2, and AcHV 3) are distributed throughout the whole animal. Patch-clamp analysis confirmed proton selectivity of these channels but they all differed markedly in gating. AcHV 1 gating resembled HV in mammalian cells where it is responsible for proton extrusion and charge compensation. AcHV 2 activates more negatively and conducts extensive inward proton current, properties likely to acidify the cytosol. AcHV 3, which differs from AcHV 1 and AcHV 2 in lacking the first arginine in the S4 helix, exhibits proton selective leak currents and weak voltage dependence. We report the expansion of the proton channel family, demonstrating for the first time the expression of three functionally distinct proton channels in a single species.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, MO, USA
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Jülich, Germany
| | - Lynne Fieber
- Department of Marine Biology and Ecology - Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | - Lydia Nausch
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
- Department of Agriculture, Food and Nutrition, Institute of Nutrition and Food Supply Management, University of Applied Sciences Weihenstephan-Triesdorf, Freising, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Iryna Mahorivska
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
5
|
Llanos MA, Ventura C, Martín P, Enrique N, Felice JI, Gavernet L, Milesi V. Novel Dimeric hHv1 Model and Structural Bioinformatic Analysis Reveal an ATP-Binding Site Resulting in a Channel Activating Effect. J Chem Inf Model 2022; 62:3200-3212. [PMID: 35758884 DOI: 10.1021/acs.jcim.1c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human voltage-gated proton channel (hHv1) is a highly selective ion channel codified by the HVCN1 gene. It plays a fundamental role in several physiological processes such as innate and adaptive immunity, insulin secretion, and sperm capacitation. Moreover, in humans, a higher hHv1 expression/function has been reported in several types of cancer cells. Here we report a multitemplate homology model of the hHv1 channel, built and refined as a dimer in Rosetta. The model was then subjected to extensive Gaussian accelerated molecular dynamics (GaMD) for enhanced conformational sampling, and representative snapshots were extracted by clustering analysis. Combining different structure- and sequence-based methodologies, we predicted a putative ATP-binding site located on the intracellular portion of the channel. Furthermore, GaMD simulations of the ATP-bound dimeric hHv1 model showed that ATP interacts with a cluster of positively charged residues from the cytoplasmic N and C terminal segments. According to the in silico predictions, we found that 3 mM intracellular ATP significantly increases the H+ current mediated by the hHv1 channel expressed in HEK293 cells and measured by the patch-clamp technique in an inside-out configuration (2.86 ± 0.63 fold over control at +40 mV). When ATP was added on the extracellular side, it was not able to activate the channel supporting the idea that the ATP-binding site resides in the intracellular face of the hHV1 channel. In a physiological and pathophysiological context, this ATP-mediated modulation could integrate the cell metabolic state with the H+ efflux, especially in cells where hHv1 channels are relevant for pH regulation, such as pancreatic β-cells, immune cells, and cancer cells.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Fac. de Ciencias Exactas, Universidad Nacional de La Plata. La Plata B1900ADU, Buenos Aires, Argentina
| | - Clara Ventura
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Juan I Felice
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Fac. de Ciencias Exactas, Universidad Nacional de La Plata. La Plata B1900ADU, Buenos Aires, Argentina
| | - Verónica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| |
Collapse
|
6
|
Jardin C, Ohlwein N, Franzen A, Chaves G, Musset B. The pH-dependent gating of the human voltage-gated proton channel from computational simulations. Phys Chem Chem Phys 2022; 24:9964-9977. [PMID: 35445675 DOI: 10.1039/d1cp05609c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gating of the voltage-gated proton channel HV1 is strongly controlled by pH. There is evidence that this involves the sidechains of titratable amino acids that change their protonation state with changes of the pH. Despite experimental investigations to identify the amino acids involved in pH sensing only few progress has been made, including one histidine at the cytoplasmic side of the channel that is involved in sensing cellular pH. We have used constant pH molecular dynamics simulations in symmetrical and asymmetrical pH conditions across the membrane to investigate the pH- and ΔpH-dependent gating of the human HV1 channel. Therefore, the pKa of every titratable amino acids has been assessed in single simulations. Our simulations captured initial conformational changes between a deactivated and an activated state of the channel induced solely by changes of the pH. The pH-dependent gating is accompanied by an outward displacement of the three S4 voltage sensing arginines that moves the second arginine past the hydrophobic gasket (HG) which separates the inner and outer pores of the channel. HV1 activation, when outer pH increases, involves amino acids at the extracellular entrance of the channel that extend the network of interactions from the external solution down to the HG. Whereas, amino acids at the cytoplasmic entrance of the channel are involved in activation, when inner pH decreases, and in a network of interactions that extend from the cytoplasm up to the HG.
Collapse
Affiliation(s)
- Christophe Jardin
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Niklas Ohlwein
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany. .,Klinik für Anästhesiologie und operative Intensivmedizin, Universitätklinik der Paracelsus Medizinischen Privatuniversität, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo Chaves
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Boris Musset
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| |
Collapse
|
7
|
Chaves G, Derst C, Jardin C, Franzen A, Musset B. Voltage-gated proton channels in polyneopteran insects. FEBS Open Bio 2022; 12:523-537. [PMID: 34986517 PMCID: PMC8804609 DOI: 10.1002/2211-5463.13361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage‐gated proton channels (HV1) are expressed in eukaryotes, including basal hexapods and polyneopteran insects. However, currently, there is little known about HV1 channels in insects. A characteristic aspartate (Asp) that functions as the proton selectivity filter (SF) and the RxWRxxR voltage‐sensor motif are conserved structural elements in HV1 channels. By analysing Transcriptome Shotgun Assembly (TSA) databases, we found 33 polyneopteran species meeting these structural requirements. Unexpectedly, an unusual natural variation Asp to glutamate (Glu) at SF was found in Phasmatodea and Mantophasmatodea. Additionally, we analysed the expression and function of HV1 in the phasmatodean stick insect Extatosoma tiaratum (Et). EtHV1 is strongly expressed in nervous tissue and shows pronounced inward proton conduction. This is the first study of a natural occurring Glu within the SF of a functional HV1 and might be instrumental in uncovering the physiological function of HV1 in insects.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany.,Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Droste A, Chaves G, Stein S, Trzmiel A, Schweizer M, Karl H, Musset B. Zinc accelerates respiratory burst termination in human PMN. Redox Biol 2021; 47:102133. [PMID: 34562872 PMCID: PMC8476447 DOI: 10.1016/j.redox.2021.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/25/2022] Open
Abstract
The respiratory burst of phagocytes is essential for human survival. Innate immune defence against pathogens relies strongly on reactive oxygen species (ROS) production by the NADPH oxidase (NOX2). ROS kill pathogens while the translocation of electrons across the plasma membrane via NOX2 depolarizes the cell. Simultaneously, protons are released into the cytosol. Here, we compare freshly isolated human polymorphonuclear leukocytes (PMN) to the granulocytes-like cell line PLB 985. We are recording ROS production while inhibiting the charge compensating and pH regulating voltage-gated proton channel (HV1). The data suggests that human PMN and the PLB 985 generate ROS via a general mechanism, consistent of NOX2 and HV1. Additionally, we advanced a mathematical model based on the biophysical properties of NOX2 and HV1. Our results strongly suggest the essential interconnection of HV1 and NOX2 during the respiratory burst of phagocytes. Zinc chelation during the time course of the experiments postulates that zinc leads to an irreversible termination of the respiratory burst over time. Flow cytometry shows cell death triggered by high zinc concentrations and PMA. Our data might help to elucidate the complex interaction of proteins during the respiratory burst and contribute to decipher its termination.
Collapse
Affiliation(s)
- Annika Droste
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany; Department of Gynecology and Obstetrics, Johannes Gutenberg University, Mainz, Germany
| | - Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Stefan Stein
- Flow Cytometry Unit, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Annette Trzmiel
- Flow Cytometry Unit, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Matthias Schweizer
- Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Hubert Karl
- Department efi, Technische Hochschule Nürnberg Georg Simon Ohm, Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany; Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
9
|
Cherny VV, Musset B, Morgan D, Thomas S, Smith SME, DeCoursey TE. Engineered high-affinity zinc binding site reveals gating configurations of a human proton channel. J Gen Physiol 2021; 152:152076. [PMID: 32902579 PMCID: PMC7537347 DOI: 10.1085/jgp.202012664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated proton channel (HV1) is a voltage sensor that also conducts protons. The singular ability of protons to penetrate proteins complicates distinguishing closed and open channels. When we replaced valine with histidine at position 116 in the external vestibule of hHV1, current was potently inhibited by externally applied Zn2+ in a construct lacking the two His that bind Zn2+ in WT channels. High-affinity binding with profound effects at 10 nM Zn2+ at pHo 7 suggests additional groups contribute. We hypothesized that Asp185, which faces position 116 in our closed-state model, contributes to Zn2+ chelation. Confirming this prediction, V116H/D185N abolished Zn2+ binding. Studied in a C-terminal truncated monomeric construct, V116H channels activated rapidly. Anomalously, Zn2+ slowed activation, producing a time constant independent of both voltage and Zn2+ concentration. We hypothesized that slow turn-on of H+ current in the presence of Zn2+ reflects the rate of Zn2+ unbinding from the channel, analogous to drug-receptor dissociation reactions. This behavior in turn suggests that the affinity for Zn2+ is greater in the closed state of hHV1. Supporting this hypothesis, pulse pairs revealed a rapid component of activation whose amplitude decreased after longer intervals at negative voltages as closed channels bound Zn2+. The lower affinity of Zn2+ in open channels is consistent with the idea that structural rearrangements within the transmembrane region bring Arg205 near position 116, electrostatically expelling Zn2+. This phenomenon provides direct evidence that Asp185 opposes position 116 in closed channels and that Arg205 moves between them when the channel opens.
Collapse
Affiliation(s)
| | - Boris Musset
- Institut für Physiologie und Pathophysiologie, Paracelsus Medizinische Privatuniversität, Nürnberg, Germany
| | - Deri Morgan
- Department of Physiology & Biophysics, Rush University, Chicago IL
| | - Sarah Thomas
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | |
Collapse
|
10
|
He J, Ritzel RM, Wu J. Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Front Cell Neurosci 2021; 15:662971. [PMID: 33897377 PMCID: PMC8063047 DOI: 10.3389/fncel.2021.662971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated proton channel Hv1 is a newly discovered ion channel that is highly conserved among species. It is known that Hv1 is not only expressed in peripheral immune cells but also one of the major ion channels expressed in tissue-resident microglia of the central nervous systems (CNS). One key role for Hv1 is its interaction with NADPH oxidase 2 (NOX2) to regulate reactive oxygen species (ROS) and cytosolic pH. Emerging data suggest that excessive ROS production increases and requires proton currents through Hv1 in the injured CNS, and manipulations that ablate Hv1 expression or induce loss of function may provide neuroprotection in CNS injury models including stroke, traumatic brain injury, and spinal cord injury. Recent data demonstrating microglial Hv1-mediated signaling in the pathophysiology of the CNS injury further supports the idea that Hv1 channel may function as a key mechanism in posttraumatic neuroinflammation and neurodegeneration. In this review, we summarize the main findings of Hv1, including its expression pattern, cellular mechanism, role in aging, and animal models of CNS injury and disease pathology. We also discuss the potential of Hv1 as a therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
11
|
Zhao C, Tombola F. Voltage-gated proton channels from fungi highlight role of peripheral regions in channel activation. Commun Biol 2021; 4:261. [PMID: 33637875 PMCID: PMC7910559 DOI: 10.1038/s42003-021-01792-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Here, we report the identification and characterization of the first proton channels from fungi. The fungal proteins are related to animal voltage-gated Hv channels and are conserved in both higher and lower fungi. Channels from Basidiomycota and Ascomycota appear to be evolutionally and functionally distinct. Representatives from the two phyla share several features with their animal counterparts, including structural organization and strong proton selectivity, but they differ from each other and from animal Hvs in terms of voltage range of activation, pharmacology, and pH sensitivity. The activation gate of Hv channels is believed to be contained within the transmembrane core of the protein and little is known about contributions of peripheral regions to the activation mechanism. Using a chimeragenesis approach, we find that intra- and extracellular peripheral regions are main determinants of the voltage range of activation in fungal channels, highlighting the role of these overlooked components in channel gating.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|