1
|
Bange L, Mukhina T, Fragneto G, Rondelli V, Schneck E. Influence of adhesion-promoting glycolipids on the structure and stability of solid-supported lipid double-bilayers. SOFT MATTER 2024; 20:2113-2125. [PMID: 38349522 DOI: 10.1039/d3sm01615c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Glycolipids have a considerable influence on the interaction between adjacent biomembranes and can promote membrane adhesion trough favorable sugar-sugar "bonds" even at low glycolipid fractions. Here, in order to obtain structural insights into this phenomenon, we utilize neutron reflectometry in combination with a floating lipid bilayer architecture that brings two glycolipid-loaded lipid bilayers to close proximity. We find that selected glycolipids with di-, or oligosaccharide headgroups affect the inter-bilayer water layer thickness and appear to contribute to the stability of the double-bilayer architecture by promoting adhesion of adjacent bilayers even against induced electrostatic repulsion. However, we do not observe any redistribution of glycolipids that would maximize the density of sugar-sugar contacts. Our results point towards possible strategies for the investigation of interactions between cell surfaces involving specific protein-protein, lipid-lipid, or protein-lipid binding.
Collapse
Affiliation(s)
- Lukas Bange
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Giovanna Fragneto
- Institut Laue-Langevin, Grenoble, France
- The European Spallation Source, ERIC, Lund, Sweden
| | - Valeria Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| |
Collapse
|
2
|
Bolik S, Schlaich A, Mukhina T, Amato A, Bastien O, Schneck E, Demé B, Jouhet J. Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants. BMC Biol 2023; 21:275. [PMID: 38017456 PMCID: PMC10685587 DOI: 10.1186/s12915-023-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.
Collapse
Affiliation(s)
- Stéphanie Bolik
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France
| | - Alexander Schlaich
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), Universität Stuttgart, Stuttgart, Germany
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Alberto Amato
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Olivier Bastien
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Bruno Demé
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France.
| | - Juliette Jouhet
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France.
| |
Collapse
|
3
|
Kav B, Weikl TR, Schneck E. Measuring pico-Newton Forces with Lipid Anchors as Force Sensors in Molecular Dynamics Simulations. J Phys Chem B 2023; 127:4081-4089. [PMID: 37127845 PMCID: PMC10184124 DOI: 10.1021/acs.jpcb.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Binding forces between biomolecules are ubiquitous in nature but sometimes as weak as a few pico-Newtons (pN). In many cases, the binding partners are attached to biomembranes with the help of a lipid anchor. One important example are glycolipids that promote membrane adhesion through weak carbohydrate-carbohydrate binding between adjacent membranes. Here, we use molecular dynamics (MD) simulations to quantify the forces generated by bonds involving membrane-anchored molecules. We introduce a method in which the protrusion of the lipid anchors from the membrane acts as the force sensor. Our results with two different glycolipids reveal binding forces of up to 20 pN and corroborate the recent notion that carbohydrate-carbohydrate interactions are generic rather than specific.
Collapse
Affiliation(s)
- Batuhan Kav
- Max Planck Institute of Colloids and Interfaces, 14467, Potsdam, Germany
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, 14467, Potsdam, Germany
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, 14467, Potsdam, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
4
|
Bolik S, Albrieux C, Schneck E, Demé B, Jouhet J. Sulfoquinovosyldiacylglycerol and phosphatidylglycerol bilayers share biophysical properties and are good mutual substitutes in photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184037. [PMID: 36041508 DOI: 10.1016/j.bbamem.2022.184037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stéphanie Bolik
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France; Institut Laue-Langevin, 38000 Grenoble, France
| | - Catherine Albrieux
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, 64289 Darmstadt, Germany
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France.
| | - Juliette Jouhet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
5
|
Mukhina T, Pabst G, Ruysschaert JM, Brezesinski G, Schneck E. pH-Dependent physicochemical properties of ornithine lipid in mono- and bilayers. Phys Chem Chem Phys 2022; 24:22778-22791. [PMID: 36111816 DOI: 10.1039/d2cp01045c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In certain bacteria, phosphatidylethanolamine lipids (PEL) get largely replaced by phosphate-free ornithine lipids (OL) under conditions of phosphate starvation. It has so far been unknown how much these two lipid types deviate in their physicochemical properties, and how strongly bacteria thus have to adapt in order to compensate for the difference. Here, we use differential scanning calorimetry, X-ray scattering, and X-ray fluorescence to investigate the properties of OL with saturated C14 alkyl chains in mono- and bilayers. OL is found to have a greater tendency than chain-analogous PEL to form ordered structures and, in contrast to PEL, even a molecular superlattice based on a hydrogen bonding network between the headgroups. This superlattice is virtually electrically uncharged and persists over a wide pH range. Our results indicate that OL and PEL behave very differently in ordered single-component membranes but may behave more similarly in fluid multicomponent membranes.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrase 8, 64289 Darmstadt, Germany.
| | - Georg Pabst
- Insitute of Molecular Biosciences, University of Graz, Universitätsplatz 3, 8010, Graz, Austria
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrase 8, 64289 Darmstadt, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrase 8, 64289 Darmstadt, Germany.
| |
Collapse
|
6
|
Mukhina T, Brezesinski G, Schneck E. Phase Behavior and Miscibility in Two-Component Glycolipid Monolayers. J Phys Chem B 2022; 126:6464-6471. [PMID: 35976765 DOI: 10.1021/acs.jpcb.2c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycolipids are known to be involved in the formation of ordered functional domains in biological membranes. Since the structural characterization of such domains is difficult, most studies have so far dealt with lipid mixtures containing only one glycolipid component at a time, although biological membranes usually contain several glycolipid species, which can result in more complex structures and phase behavior. Here, we combine classical isotherm measurements with surface-sensitive grazing-incidence X-ray diffraction to investigate the phase behavior and miscibility in Langmuir monolayers of binary glycolipid mixtures. We find that the phase behavior has a subtle dependence on the saccharide headgroup chemistry. For compatible chemistries, molecular superlattice structures formed by one of the glycolipid species are conserved and can host foreign glycolipids up to a defined stoichiometry. In contrast, for sterically incompatible saccharide chemistries, the superlattice is lost even if both species are able to form such structures in their pure forms. Our results suggest that related phenomena may play important roles also in biological contexts.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
7
|
Hanashima S, Ikeda R, Matsubara Y, Yasuda T, Tsuchikawa H, Slotte JP, Murata M. Effect of cholesterol on the lactosylceramide domains in phospholipid bilayers. Biophys J 2022; 121:1143-1155. [PMID: 35218738 PMCID: PMC9034317 DOI: 10.1016/j.bpj.2022.02.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 02/22/2022] [Indexed: 11/02/2022] Open
Abstract
Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered (Lo) phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10',10'-d2-LacCer and 18',18',18'-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline (Ld) domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60 °C, while the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, while the Lo domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron- to nano-scale small domains in the Ld domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid (tPA) and tPA-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | - Ryuji Ikeda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Matsubara
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FIN 20520 Turku, Finland
| | - Michio Murata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan; JST ERATO, Lipid Active Structure Project, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Mukhina T, Brezesinski G, Shen C, Schneck E. Phase behavior and miscibility in lipid monolayers containing glycolipids. J Colloid Interface Sci 2022; 615:786-796. [PMID: 35176545 DOI: 10.1016/j.jcis.2022.01.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/02/2023]
Abstract
HYPOTHESIS Glycolipids in biological membranes are ubiquitous and believed to be involved in the formation of ordered functional domains. However, our current knowledge about such glycolipid-enriched domains is limited because they are inherently difficult to characterize. EXPERIMENTS We use grazing-incidence X-ray diffraction, isotherm measurements, and Brewster angle microscopy to investigate the phase behavior and miscibility in Langmuir lipid monolayers containing glycolipids. FINDINGS Glycolipid-enriched domains give rise to distinct diffraction patterns that allow for a systematic structural investigation and reveal a rich phenomenology, ranging from near-complete demixing to the formation of mixed domains with unique features. The phase behavior is governed by the headgroup chemistry and by the length and saturation of the tails.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| |
Collapse
|
9
|
Strati F, Mukhina T, Neubert RH, Opalka L, Hause G, Schmelzer CE, Menzel M, Brezesinski G. Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces. BBA ADVANCES 2022; 2:100039. [PMID: 37082599 PMCID: PMC10074917 DOI: 10.1016/j.bbadva.2021.100039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The stratum corneum (SC) is the largest physical barrier of the human body. It protects against physical, chemical and biological damages, and avoids evaporation of water from the deepest skin layers. For its correct functioning, the homeostasis of the SC lipid matrix is fundamental. An alteration of the lipid matrix composition and in particular of its ceramide (CER) fraction can lead to the development of pathologies such as atopic dermatitis and psoriasis. Different studies showed that the direct replenishment of SC lipids on damaged skin had positive effects on the recovery of its barrier properties. In this work, cerosomes, i.e. liposomes composed of SC lipids, have been successfully prepared in order to investigate the mechanism of interaction with a model SC lipid matrix. The cerosomes contain CER[NP], D-CER[AP], stearic acid and cholesterol. In addition, hydrogenated soybean phospholipids have been added to one of the formulations leading to an increased stability at neutral pH. For the mode of action studies, monolayer models at the air-water interface and on solid support have been deployed. The results indicated that a strong interaction occurred between SC monolayers and the cerosomes. Since both systems were negatively charged, the driving force for the interaction must be based on the ability of CERs head groups to establish intermolecular hydrogen bonding networks that energetically prevailed against the electrostatic repulsion. This work proved for the first time the mode of action by which cerosomes exploit their function as skin barrier repairing agents on the SC.
Collapse
|
10
|
Kav B, Demé B, Gege C, Tanaka M, Schneck E, Weikl TR. Interplay of Trans- and Cis-Interactions of Glycolipids in Membrane Adhesion. Front Mol Biosci 2021; 8:754654. [PMID: 34869588 PMCID: PMC8641917 DOI: 10.3389/fmolb.2021.754654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
Glycolipids mediate stable membrane adhesion of potential biological relevance. In this article, we investigate the trans- and cis-interactions of glycolipids in molecular dynamics simulations and relate these interactions to the glycolipid-induced average separations of membranes obtained from neutron scattering experiments. We find that the cis-interactions between glycolipids in the same membrane leaflet tend to strengthen the trans-interactions between glycolipids in apposing leaflets. The trans-interactions of the glycolipids in our simulations require local membrane separations that are significantly smaller than the average membrane separations in the neutron scattering experiments, which indicates an important role of membrane shape fluctuations in glycolipid trans-binding. Simulations at the experimentally measured average membrane separations provide a molecular picture of the interplay between glycolipid attraction and steric repulsion of the fluctuating membranes probed in the experiments.
Collapse
Affiliation(s)
- Batuhan Kav
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| | - Bruno Demé
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Christian Gege
- Heidelberg University, Institute of Physical Chemistry of Biosystems, Heidelberg, Germany
| | - Motomu Tanaka
- Heidelberg University, Institute of Physical Chemistry of Biosystems, Heidelberg, Germany.,Kyoto University, Institute for Advanced Study, Center for Integrative Medicine and Physics, Kyoto, Japan
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.,Technische Universität Darmstadt, Physics Department, Darmstadt, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
| |
Collapse
|
11
|
Morelli AM, Chiantore M, Ravera S, Scholkmann F, Panfoli I. Myelin sheath and cyanobacterial thylakoids as concentric multilamellar structures with similar bioenergetic properties. Open Biol 2021; 11:210177. [PMID: 34905702 PMCID: PMC8670949 DOI: 10.1098/rsob.210177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is a surprisingly high morphological similarity between multilamellar concentric thylakoids in cyanobacteria and the myelin sheath that wraps the nerve axons. Thylakoids are multilamellar structures, which express photosystems I and II, cytochromes and ATP synthase necessary for the light-dependent reaction of photosynthesis. Myelin is a multilamellar structure that surrounds many axons in the nervous system and has long been believed to act simply as an insulator. However, it has been shown that myelin has a trophic role, conveying nutrients to the axons and producing ATP through oxidative phosphorylation. Therefore, it is tempting to presume that both membranous structures, although distant in the evolution tree, share not only a morphological but also a functional similarity, acting in feeding ATP synthesized by the ATP synthase to the centre of the multilamellar structure. Therefore, both molecular structures may represent a convergent evolution of life on Earth to fulfill fundamentally similar functions.
Collapse
Affiliation(s)
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genova, Italy
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabella Panfoli
- Experimental Medicine Department, University of Genova, Genova, Italy
| |
Collapse
|
12
|
Kav B, Grafmüller A, Schneck E, Weikl TR. Weak carbohydrate-carbohydrate interactions in membrane adhesion are fuzzy and generic. NANOSCALE 2020; 12:17342-17353. [PMID: 32789381 DOI: 10.1039/d0nr03696j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbohydrates such as the trisaccharide motif LeX are key constituents of cell surfaces. Despite intense research, the interactions between carbohydrates of apposing cells or membranes are not well understood. In this article, we investigate carbohydrate-carbohydrate interactions in membrane adhesion as well as in solution with extensive atomistic molecular dynamics simulations that exceed the simulation times of previous studies by orders of magnitude. For LeX, we obtain association constants of soluble carbohydrates, adhesion energies of lipid-anchored carbohydrates, and maximally sustained forces of carbohydrate complexes in membrane adhesion that are in good agreement with experimental results in the literature. Our simulations thus appear to provide a realistic, detailed picture of LeX-LeX interactions in solution and during membrane adhesion. In this picture, the LeX-LeX interactions are fuzzy, i.e. LeX pairs interact in a large variety of short-lived, bound conformations. For the synthetic tetrasaccharide Lac 2, which is composed of two lactose units, we observe similarly fuzzy interactions and obtain association constants of both soluble and lipid-anchored variants that are comparable to the corresponding association constants of LeX. The fuzzy, weak carbohydrate-carbohydrate interactions quantified in our simulations thus appear to be a generic feature of small, neutral carbohydrates such as LeX and Lac 2.
Collapse
Affiliation(s)
- Batuhan Kav
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany and Technische Universität Darmstadt, Physics Department, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|