1
|
Keerthiga R, Xie Y, Pei D, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2024:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yafang Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Desheng Pei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol 2024; 15:1421905. [PMID: 39027328 PMCID: PMC11254633 DOI: 10.3389/fphar.2024.1421905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer, due to resistance to standard therapies such as endocrine therapy, anti-HER2 therapy and chemotherapy, continues to pose a major health challenge. A growing body of research emphasizes the heterogeneity and plasticity of metabolism in breast cancer. Because differences in subtypes exhibit a bias toward metabolic pathways, targeting mitochondrial inhibitors shows great potential as stand-alone or adjuvant cancer therapies. Multiple therapeutic candidates are currently in various stages of preclinical studies and clinical openings. However, specific inhibitors have been shown to face multiple challenges (e.g., single metabolic therapies, mitochondrial structure and enzymes, etc.), and combining with standard therapies or targeting multiple metabolic pathways may be necessary. In this paper, we review the critical role of mitochondrial metabolic functions, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle, and fatty acid and amino acid metabolism, in metabolic reprogramming of breast cancer cells. In addition, we outline the impact of mitochondrial dysfunction on metabolic pathways in different subtypes of breast cancer and mitochondrial inhibitors targeting different metabolic pathways, aiming to provide additional ideas for the development of mitochondrial inhibitors and to improve the efficacy of existing therapies for breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Tang
- Paediatrics Department, Southwest Medical University, Luzhou, China
| | - Xiaoyan Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Huang X, Xue Z, Zhang D, Lee HJ. Pinpointing Fat Molecules: Advances in Coherent Raman Scattering Microscopy for Lipid Metabolism. Anal Chem 2024; 96:7945-7958. [PMID: 38700460 DOI: 10.1021/acs.analchem.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Xiangjie Huang
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Zexin Xue
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, and Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Li Y, Xiong JB, Jie ZG, Xiong H. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta gene as a tumour suppressor in stomach adenocarcinoma. Front Oncol 2022; 12:1069875. [PMID: 36518312 PMCID: PMC9743170 DOI: 10.3389/fonc.2022.1069875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is the most common type of gastric cancer. In this study, the functions and potential mechanisms of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) in STAD were explored. METHODS Different bioinformatics analyses were performed to confirm HADHB expression in STAD. HADHB expression in STAD tissues and cells was also evaluated using western blot, qRT-PCR, and immunohistochemistry. Further, the viability, proliferation, colony formation, cell cycle determination, migration, and wound healing capacity were assessed, and the effects of HADHB on tumour growth, cell apoptosis, and proliferation in nude mice were determined. The upstream effector of HADHB was examined using bioinformatics analysis and dual luciferase reporter assay. GSEA was also employed for pathway enrichment analysis and the expression of Hippo-YAP pathway-related proteins was detected. RESULTS The expression of HADHB was found to be low in STAD tissues and cells. The upregulation of HADHB distinctly repressed the viability, proliferation, colony formation, cell cycle progression, migration, invasion, and wound healing of HGC27 cells, while knockdown of HADHB led to opposite effects. HADHB upregulation impeded tumour growth and cell proliferation, and enhanced apoptosis in nude mice. KLF4, whose expression was low in STAD, was identified as an upstream regulator of HADHB. KLF4 upregulation abolished the HADHB knockdown-induced tumour promoting effects in AGS cells. Further, HADHB regulates the Hippo-YAP pathway, which was validated using a pathway rescue assay. Low expression of KLF4 led to HADHB downregulation in STAD. CONCLUSION HADHB might function as a tumour suppressor gene in STAD by regulation the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Yun Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Bo Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Gang Jie
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Hui Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Farag MA, Hariri MLM, Ehab A, Homsi MN, Zhao C, von Bergen M. Cocoa seeds and chocolate products interaction with gut microbiota; mining microbial and functional biomarkers from mechanistic studies, clinical trials and 16S rRNA amplicon sequencing. Crit Rev Food Sci Nutr 2022; 64:3122-3138. [PMID: 36190306 DOI: 10.1080/10408398.2022.2130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, gut microbiome has evolved as a focal point of interest with growing recognition that a well-balanced gut microbiota is highly relevant to an individual's health status. The present review provides a mechanistic insight on the effects of cocoa chemicals on the gut microbiome and further reveals in silico biomarkers, taxonomic and functional features that distinguish gut microbiome of cocoa consumers and controls by using 16S rRNA gene sequencing data. The polyphenols in cocoa can change the gut microbiota either by inhibiting the growth of pathogenic bacteria in the gut such as Clostridium perfringens or by increasing the growth of beneficial microbiota in the gut such as Lactobacillus and Bifidobacterium. This paper demonstrates the holistic effect of gut microbiota on cocoa chemicals and how it impacts human health. We present herein the first comprehensive review and analysis of how raw and roasted cocoa and its products can specifically influence gut homeostasis, and likewise, how microbiota metabolizes cocoa chemicals. In addition to that, our 16S rRNA amplicon sequencing analysis revealed that the flavone and flavonols metabolism, aminobenzoate degradation and fatty acid elongation pathways represent the three most important signatures of microbial functions associated with cocoa consumption.
Collapse
Affiliation(s)
- Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamad Louai M Hariri
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Aya Ehab
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Masun Nabhan Homsi
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Biochemistry, Life Science Faculty, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
7
|
Komandin GA, Zaytsev KI, Dolganova IN, Nozdrin VS, Chuchupal SV, Anzin VB, Spektor IE. Quantification of solid-phase chemical reactions using the temperature-dependent terahertz pulsed spectroscopy, sum rule, and Arrhenius theory: thermal decomposition of α-lactose monohydrate. OPTICS EXPRESS 2022; 30:9208-9221. [PMID: 35299355 DOI: 10.1364/oe.453528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Transformations of the low-energy vibrational spectra are associated with structural changes in an analyte and closely related to the instability of weak chemical bounds. Terahertz (THz)/far-infrared optical spectroscopy is commonly used to probe such transformation, aimed at characterization of the underlying solid-phase chemical reactions in organic compounds. However, such studies usually provide quite qualitative information about the temperature- and time-dependent parameters of absorption peaks in dielectric spectra of an analyte. In this paper, an approach for quantitative analyses of the solid-phased chemical reactions based on the THz pulsed spectroscopy was developed. It involves studying an evolution of the sample optical properties, as a function of the analyte temperature and reaction time, and relies on the classical oscillator model, the sum rule, and the Arrhenius theory. The method allows one to determine the temperature-dependent reaction rate V1(T) and activation energy Ea. To demonstrate the practical utility of this method, it was applied to study α-lactose monohydrate during its temperature-induced molecular decomposition. Analysis of the measured THz spectra revealed the increase of the reaction rate in the range of V1 ≃ ~9 × 10-4-10-2 min-1, when the analyte temperature rises from 313 to 393 K, while the Arrhenius activation energy is Ea ≃ ~45.4 kJ/mol. Thanks to a large number of obtained physical and chemical parameters, the developed approach expands capabilities of THz spectroscopy in chemical physics, analytical chemistry, and pharmaceutical industry.
Collapse
|
8
|
Prince RC, Potma EO. Coherent Raman scattering microscopy: capable solution in search of a larger audience. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210102-PER. [PMID: 34085436 PMCID: PMC8174578 DOI: 10.1117/1.jbo.26.6.060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Coherent Raman scattering (CRS) microscopy is an optical imaging technique with capabilities that could benefit a broad range of biomedical research studies. AIM We reflect on the birth, rapid rise, and inescapable growing pains of the technique and look back on nearly four decades of developments to examine where the CRS imaging approach might be headed in the next decade to come. APPROACH We provide a brief historical account of CRS microscopy, followed by a discussion of the challenges to disseminate the technique to a larger audience. We then highlight recent progress in expanding the capabilities of the CRS microscope and assess its current appeal as a practical imaging tool. RESULTS New developments in Raman tagging have improved the specificity and sensitivity of the CRS technique. In addition, technical advances have led to CRS microscopes that can capture hyperspectral data cubes at practical acquisition times. These improvements have broadened the application space of the technique. CONCLUSION The technical performance of the CRS microscope has improved dramatically since its inception, but these advances have not yet translated into a substantial user base beyond a strong core of enthusiasts. Nonetheless, new developments are poised to move the unique capabilities of the technique into the hands of more users.
Collapse
Affiliation(s)
- Richard C. Prince
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Eric O. Potma
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
- Address all correspondence to Eric O. Potma,
| |
Collapse
|