1
|
Liu B, Wei R, Wang Y, Cheng Z, Jiang L, Pu X, Zhang Y, Wang Y, Kang Q. Integrative Proteomics and Phosphoproteomics Profiling of Symptomatic Accessory Navicular Bone Based on Tandem Mass Tag Technology. Int J Gen Med 2024; 17:6207-6218. [PMID: 39698044 PMCID: PMC11653880 DOI: 10.2147/ijgm.s484303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Background The accessory navicular bone (ANB) is a common accessory bone in the foot. Certain ANBs significantly impair patients' feet normal walking function. Foot injury is associated with ANB after athletic training. However, the molecular mechanism of foot injury with ANB after athletic training remains unclear. This study aims to investigate the proteomics and phosphoproteomics profile of foot injury with the ANB after athletic training. Patients and Methods We collected ANB tissues and normal bone (NB) tissues from 5 foot injury patients with ANB after 3 months of athletic training to perform proteome sequencing by tandem mass tag (TMT) technology. Then, the differentially expressed proteins (DEPs) and phosphorylation proteins (DPPs) were identified between the ANB and NB groups. Furthermore, the potential functions of DEPs and DPPs were annotated, respectively. Besides, the protein-protein interaction (PPI) network was constructed for DEPs. Results A total of 147 DEPs (129 upregulated and 18 downregulated) were detected. Functional enrichment suggested that they were involved in extracellular matrix (ECM)-receptor interaction and cell adhesion. PPI network showed that COL4A1 and COL4A2 had the highest interaction score, followed by RBBP4 and RBBP7. In addition, phosphoproteomics analysis identified 4 upregulated and 1 downregulated DPPs, and they were primarily enriched in regulating lipolysis in adipocytes. Conclusion Our study found that foot injury with ANB after exercise training may be associated with proteins related to inflammation and immunity (such as MRC1, UBE2N, CYCS), bone repair and regeneration (such as Emilin2, COL4A1, COL4A2, and ITGA9), and bone microstructure homeostasis (such as GCA and ANXA3). This provides new insights into understanding its pathogenesis and guiding treatment strategies.
Collapse
Affiliation(s)
- Bin Liu
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Ran Wei
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Yuqing Wang
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Zishen Cheng
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Liangliang Jiang
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Xiaopeng Pu
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Yaxing Zhang
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Yantao Wang
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Qiangjun Kang
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| |
Collapse
|
2
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. EMBO J 2024; 43:4720-4751. [PMID: 39256561 PMCID: PMC11480408 DOI: 10.1038/s44318-024-00200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known. Here, we use Saccharomyces cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, the resulting tyrosine phosphorylation is biologically spurious. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3500 proteins. The number of spurious pY sites generated correlates strongly with decreased growth, and we predict over 1000 pY events to be deleterious. However, we also find that many of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with tyrosine kinases. Our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada.
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada.
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada.
- Department of Biology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Phillips AH, Kriwacki RW. The role of intrinsic protein disorder in regulation of cyclin-dependent kinases. Curr Opin Struct Biol 2024; 88:102906. [PMID: 39142260 DOI: 10.1016/j.sbi.2024.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
While the structure/function paradigm for folded domains was established decades ago, our understanding of how intrinsically disordered regions (IDRs) contribute to biological function is still evolving. IDRs exist as conformational ensembles that can range from highly compact to highly extended depending on their sequence composition. IDR sequences are less conserved than those of folded domains, but often display short, conserved segments termed short linear motifs (SLiMs), that often mediate protein-protein interactions and are often regulated by posttranslational modifications, giving rise to complex functionality when multiple, differently regulated SLiMs are combined. This combinatorial functionality was associated with signaling and regulation soon after IDRs were first recognized as functional elements within proteins. Here, we discuss roles for disorder in proteins that regulate cyclin-dependent kinases, the master timekeepers of the eukaryotic cell cycle. We illustrate the importance of intrinsic flexibility in the transmission of regulatory signals by these entirely disordered proteins.
Collapse
Affiliation(s)
- Aaron H Phillips
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. The fitness cost of spurious phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561337. [PMID: 37873463 PMCID: PMC10592693 DOI: 10.1101/2023.10.08.561337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.
Collapse
Affiliation(s)
- David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rohan Dandage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université du Québec à Montréal, Montréal, QC, Canada
- Université Laval Big Data Research Center (BDRC_UL), Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Goldtzvik Y, Sen N, Lam SD, Orengo C. Protein diversification through post-translational modifications, alternative splicing, and gene duplication. Curr Opin Struct Biol 2023; 81:102640. [PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, United Kingdom. https://twitter.com/@NeeladriSen
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Papaleo E, Tiberti M, Arnaudi M, Pecorari C, Faienza F, Cantwell L, Degn K, Pacello F, Battistoni A, Lambrughi M, Filomeni G. TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins. Cell Death Dis 2023; 14:284. [PMID: 37085483 PMCID: PMC10121659 DOI: 10.1038/s41419-023-05780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S-nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S-nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S-nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S-nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S-nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S-nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.
Collapse
Affiliation(s)
- Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Matteo Arnaudi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Chiara Pecorari
- Redox Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Lisa Cantwell
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Francesca Pacello
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
- Center for Healthy Aging, Copenhagen University, 2200, Copenhagen, Denmark
| |
Collapse
|
7
|
Pandey B, Sinha K, Dev A, Ganguly HK, Polley S, Chakrabarty S, Basu G. Phosphorylation-Competent Metastable State of Escherichia coli Toxin HipA. Biochemistry 2023; 62:989-999. [PMID: 36802529 DOI: 10.1021/acs.biochem.2c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Phosphorylation is a key post-translational modification that alters the functional state of many proteins. The Escherichia coli toxin HipA, which phosphorylates glutamyl-tRNA synthetase and triggers bacterial persistence under stress, becomes inactivated upon autophosphorylation of Ser150. Interestingly, Ser150 is phosphorylation-incompetent in the crystal structure of HipA since it is deeply buried ("in-state"), although in the phosphorylated state it is solvent exposed ("out-state"). To be phosphorylated, a minor population of HipA must exist in the phosphorylation-competent "out-state" (solvent-exposed Ser150), not detected in the crystal structure of unphosphorylated HipA. Here we report a molten-globule-like intermediate of HipA at low urea (∼4 kcal/mol unstable than natively folded HipA). The intermediate is aggregation-prone, consistent with a solvent exposed Ser150 and its two flanking hydrophobic neighbors (Val/Ile) in the "out-state". Molecular dynamics simulations showed the HipA "in-out" pathway to contain multiple free energy minima with an increasing degree of Ser150 solvent exposure with the free energy difference between the "in-state" and the metastable exposed state(s) to be ∼2-2.5 kcal/mol, with unique sets of hydrogen bonds and salt bridges associated with the metastable loop conformations. Together, the data clearly identify the existence of a phosphorylation-competent metastable state of HipA. Our results not only suggest a mechanism of HipA autophosphorylation but also add to a number of recent reports on unrelated protein systems where the common proposed mechanism for phosphorylation of buried residues is their transient exposure even without phosphorylation.
Collapse
Affiliation(s)
- Bhawna Pandey
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III Salt Lake, Kolkata 700106, India
| | - Aditya Dev
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Himal K Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Smarajit Polley
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III Salt Lake, Kolkata 700106, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
8
|
Newcombe EA, Delaforge E, Hartmann-Petersen R, Skriver K, Kragelund BB. How phosphorylation impacts intrinsically disordered proteins and their function. Essays Biochem 2022; 66:901-913. [PMID: 36350035 PMCID: PMC9760426 DOI: 10.1042/ebc20220060] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
Abstract
Phosphorylation is the most common post-translational modification (PTM) in eukaryotes, occurring particularly frequently in intrinsically disordered proteins (IDPs). These proteins are highly flexible and dynamic by nature. Thus, it is intriguing that the addition of a single phosphoryl group to a disordered chain can impact its function so dramatically. Furthermore, as many IDPs carry multiple phosphorylation sites, the number of possible states increases, enabling larger complexities and novel mechanisms. Although a chemically simple and well-understood process, the impact of phosphorylation on the conformational ensemble and molecular function of IDPs, not to mention biological output, is highly complex and diverse. Since the discovery of the first phosphorylation site in proteins 75 years ago, we have come to a much better understanding of how this PTM works, but with the diversity of IDPs and their capacity for carrying multiple phosphoryl groups, the complexity grows. In this Essay, we highlight some of the basic effects of IDP phosphorylation, allowing it to serve as starting point when embarking on studies into this topic. We further describe how recent complex cases of multisite phosphorylation of IDPs have been instrumental in widening our view on the effect of protein phosphorylation. Finally, we put forward perspectives on the phosphorylation of IDPs, both in relation to disease and in context of other PTMs; areas where deep insight remains to be uncovered.
Collapse
Affiliation(s)
- Estella A Newcombe
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Elise Delaforge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
- The Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Chong L, Hsu CC, Zhu Y. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6547-6557. [PMID: 35959917 DOI: 10.1093/jxb/erac324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses have significant impacts on crop yield and quality. Even though significant efforts during the past decade have been devoted to uncovering the core signaling pathways associated with the phytohormone abscisic acid (ABA) and abiotic stress in plants, abiotic stress signaling mechanisms in most crops remain largely unclear. The core components of the ABA signaling pathway, including early events in the osmotic stress-induced phosphorylation network, have recently been elucidated in Arabidopsis with the aid of phosphoproteomics technologies. We now know that SNF1-related kinases 2 (SnRK2s) are not only inhibited by the clade A type 2C protein phosphatases (PP2Cs) through dephosphorylation, but also phosphorylated and activated by upstream mitogen-activated protein kinase kinase kinases (MAP3Ks). Through describing the course of studies to elucidate abiotic stress and ABA signaling, we will discuss how we can take advantage of the latest innovations in mass-spectrometry-based phosphoproteomics and structural proteomics to boost our investigation of plant regulation and responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
10
|
Ramasamy P, Vandermarliere E, Vranken WF, Martens L. Panoramic Perspective on Human Phosphosites. J Proteome Res 2022; 21:1894-1915. [PMID: 35793420 DOI: 10.1021/acs.jproteome.2c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is the most common reversible post-translational modification of proteins and is key in the regulation of many cellular processes. Due to this importance, phosphorylation is extensively studied, resulting in the availability of a large amount of mass spectrometry-based phospho-proteomics data. Here, we leverage the information in these large-scale phospho-proteomics data sets, as contained in Scop3P, to analyze and characterize proteome-wide protein phosphorylation sites (P-sites). First, we set out to differentiate correctly observed P-sites from false-positive sites using five complementary site properties. We then describe the context of these P-sites in terms of the protein structure, solvent accessibility, structural transitions and disorder, and biophysical properties. We also investigate the relative prevalence of disease-linked mutations on and around P-sites. Moreover, we assess the structural dynamics of P-sites in their phosphorylated and unphosphorylated states. As a result, we show how large-scale reprocessing of available proteomics experiments can enable a more reliable view on proteome-wide P-sites. Furthermore, adding the structural context of proteins around P-sites helps uncover possible conformational switches upon phosphorylation. Moreover, by placing sites in different biophysical contexts, we show the differential preference in protein dynamics at phosphorylated sites when compared to the nonphosphorylated counterparts.
Collapse
Affiliation(s)
- Pathmanaban Ramasamy
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Centre for Structural Biology, VIB, 1050 Brussels, Belgium
| | | | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Centre for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Swadling JB, Warnecke T, Morris KL, Barr AR. Conserved Cdk inhibitors show unique structural responses to tyrosine phosphorylation. Biophys J 2022; 121:2312-2329. [PMID: 35614852 PMCID: PMC9279356 DOI: 10.1016/j.bpj.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/01/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022] Open
Abstract
Balanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis, and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs) p21Cip1/Waf1, p27Kip1, and p57Kip2 bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signaling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular-dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.
Collapse
Affiliation(s)
- Jacob B Swadling
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom.
| | - Tobias Warnecke
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom
| | - Kyle L Morris
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Alexis R Barr
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom; MRC London Institute of Medical Sciences, London, United Kingdom.
| |
Collapse
|
12
|
Li Y, Gong H. Identifying a Feasible Transition Pathway between Two Conformational States for a Protein. J Chem Theory Comput 2022; 18:4529-4543. [PMID: 35723447 DOI: 10.1021/acs.jctc.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins usually need to transit between different conformational states to fulfill their biological functions. In the mechanistic study of such transition processes by molecular dynamics simulations, identification of the minimum free energy path (MFEP) can substantially reduce the sampling space, thus enabling rigorous thermodynamic evaluation of the process. Conventionally, the MFEP is derived by iterative local optimization from an initial path, which is typically generated by simple brute force techniques like the targeted molecular dynamics (tMD). Therefore, the quality of the initial path determines the successfulness of MFEP estimation. In this work, we propose a method to improve derivation of the initial path. Through iterative relaxation-biasing simulations in a bidirectional manner, this method can construct a feasible transition pathway connecting two known states for a protein. Evaluation on small, fast-folding proteins against long equilibrium trajectories supports the good sampling efficiency of our method. When applied to larger proteins including the catalytic domain of human c-Src kinase as well as the converter domain of myosin VI, the paths generated by our method deviate significantly from those computed with the generic tMD approach. More importantly, free energy profiles and intermediate states obtained from our paths exhibit remarkable improvements over those from tMD paths with respect to both physical rationality and consistency with a priori knowledge.
Collapse
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR, Naganathan AN. Structural-Energetic Basis for Coupling between Equilibrium Fluctuations and Phosphorylation in a Protein Native Ensemble. ACS CENTRAL SCIENCE 2022; 8:282-293. [PMID: 35233459 PMCID: PMC8880421 DOI: 10.1021/acscentsci.1c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
Collapse
Affiliation(s)
- Hemashree Golla
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Adithi Kannan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmiya Murugan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi R Perumalsamy
- Department
of Biomedical Sciences, Sri Ramachandra
Institute of Higher Education and Research, Chennai 600116, India
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Abdelgawad MA, Elkanzi NA, Nayl A, Musa A, Hadal Alotaibi N, Arafa W, Gomha SM, Bakr RB. Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Transient exposure of a buried phosphorylation site in an autoinhibited protein. Biophys J 2022; 121:91-101. [PMID: 34864046 PMCID: PMC8758417 DOI: 10.1016/j.bpj.2021.11.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. These conformational dynamics make it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely tuned equilibrium between an inhibited and a kinase-accessible state.
Collapse
|
16
|
In Silico Prediction of the Phosphorylation of NS3 as an Essential Mechanism for Dengue Virus Replication and the Antiviral Activity of Quercetin. BIOLOGY 2021; 10:biology10101067. [PMID: 34681164 PMCID: PMC8570334 DOI: 10.3390/biology10101067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Dengue is a mosquito-borne virus that infects up to 400 million people worldwide annually. Dengue infection triggers high fever, severe body aches, rash, low platelet count, and could lead to Dengue hemorrhagic fever (DHF) in some cases. There is currently no cure, nor a broadly effective vaccine. The interaction of two viral proteins, nonstructural Proteins 3 and 5 (NS3 and NS5), is required for viral replication in the infected host’s cells. Our computational modeling of NS3 suggested that phosphorylation of a serine residue at position 137 of NS3 by a specific c-Jun N-terminal kinase (JNK) enhances viral replication by increasing the interaction of NS3 and NS5 through structural changes in amino acid residues 49–95. Experimental studies have shown that inhibition of JNK prevents viral replication and have suggested that the plants’ flavonoid Quercetin, Agathis flavone, and Myricetin inhibit Dengue infection. Our molecular simulations revealed that Quercetin binds NS3 and obstructs serine 137 phosphorylation, which may decrease viral replication. This work offers a molecular mechanism that can be used for anti-Dengue drug development. Abstract Dengue virus infection is a global health problem for which there have been challenges to obtaining a cure. Current vaccines and anti-viral drugs can only be narrowly applied in ongoing clinical trials. We employed computational methods based on structure-function relationships between human host kinases and viral nonstructural protein 3 (NS3) to understand viral replication inhibitors’ therapeutic effect. Phosphorylation at each of the two most evolutionarily conserved sites of NS3, serine 137 and threonine 189, compared to the unphosphorylated state were studied with molecular dynamics and docking simulations. The simulations suggested that phosphorylation at serine 137 caused a more remarkable structural change than phosphorylation at threonine 189, specifically located at amino acid residues 49–95. Docking studies supported the idea that phosphorylation at serine 137 increased the binding affinity between NS3 and nonstructural Protein 5 (NS5), whereas phosphorylation at threonine 189 decreased it. The interaction between NS3 and NS5 is essential for viral replication. Docking studies with the antiviral plant flavonoid Quercetin with NS3 indicated that Quercetin physically occluded the serine 137 phosphorylation site. Taken together, these findings suggested a specific site and mechanism by which Quercetin inhibits dengue and possible other flaviviruses.
Collapse
|
17
|
Abstract
Flexibility in complexes between intrinsically disordered proteins and folded ligands is widespread in nature. However, timescales and spatial amplitudes of such dynamics remained unexplored for most systems. Our results show that the disordered cytoplasmic tail of the cell adhesion protein E-cadherin diffuses across the entire surface of its folded binding partner β-catenin at fast submillisecond timescales. The nanometer amplitude of these motions could allow kinases to access their recognition motifs without requiring a dissociation of the complex. We expect that the rugged energy landscape found in the E-cadherin/β-catenin complex is a defining feature of dynamic and partially disordered protein complexes. Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.
Collapse
|
18
|
Zhang J, He W, Zheng D, He Q, Tan M, Jin J. Exosomal‑miR‑1184 derived from mesenchymal stem cells alleviates cisplatin‑associated acute kidney injury. Mol Med Rep 2021; 24:795. [PMID: 34515319 PMCID: PMC8446730 DOI: 10.3892/mmr.2021.12435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury (AKI) poses a severe threat to human health. MicroRNAs (miRNAs/miRs) are known to be involved in the progression of AKI; however, the function of miR‑1184 in AKI remains unclear. Thus, the aim of the present study was to examine the role of this miRNA in kidney injury. In order to mimic AKI in vitro, HK‑2 cells were treated with cisplatin. Bioinformatics analysis was performed to explore the differentially expressed miRNAs in AKI. A Cell Counting Kit‑8 assay and flow cytometry were performed to examine cell viability and apoptosis, respectively. mRNA expression levels were detected via reverse transcription‑quantitative PCR, and protein levels were investigated by western blot analysis. ELISA was performed to examine the levels of IL‑1β and TNF‑α in the cell supernatants. The results revealed that miR‑1184 expression was downregulated in AKI. Exosomes derived from miR‑1184 agomir‑treated mesenchymal stem cells (MSCs) significantly reversed cisplatin‑induced cell growth inhibition by inhibiting apoptosis. Moreover, forkhead box O4 (FOXO4) was found to be the direct target of miR‑1184, and exosomes expressing miR‑1184 notably inhibited cisplatin‑induced inflammatory responses in HK‑2 cells via the mediation of IL‑1β and TNF‑α. Furthermore, exosomes derived from miR‑1184 agomir‑treated MSCs significantly induced G1 phase arrest in HK‑2 cells via the regulation of FOXO4, p27 Kip1 and CDK2. In conclusion, the present study demonstrated that exosomal‑miR‑1184 derived from MSCs alleviates cisplatin‑associated AKI. Thus, the findings presented herein may shed new light onto the exploration of novel strategies for the treatment of AKI.
Collapse
Affiliation(s)
- Jinshi Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenfang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Mingming Tan
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Juan Jin
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
19
|
Jilishitz I, Quiñones JL, Patel P, Chen G, Pasetsky J, VanInwegen A, Schoninger S, Jogalekar MP, Tsiperson V, Yan L, Wu Y, Gottesman SRS, Somma J, Blain SW. NP-ALT, a Liposomal:Peptide Drug, Blocks p27Kip1 Phosphorylation to Induce Oxidative Stress, Necroptosis, and Regression in Therapy-Resistant Breast Cancer Cells. Mol Cancer Res 2021; 19:1929-1945. [PMID: 34446542 DOI: 10.1158/1541-7786.mcr-21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Resistance to cyclin D-CDK4/6 inhibitors (CDK4/6i) represents an unmet clinical need and is frequently caused by compensatory CDK2 activity. Here we describe a novel strategy to prevent CDK4i resistance by using a therapeutic liposomal:peptide formulation, NP-ALT, to inhibit the tyrosine phosphorylation of p27Kip1(CDKN1B), which in turn inhibits both CDK4/6 and CDK2. We find that NP-ALT blocks proliferation in HR+ breast cancer cells, as well as CDK4i-resistant cell types, including triple negative breast cancer (TNBC). The peptide ALT is not as stable in primary mammary epithelium, suggesting that NP-ALT has little effect in nontumor tissues. In HR+ breast cancer cells specifically, NP-ALT treatment induces ROS and RIPK1-dependent necroptosis. Estrogen signaling and ERα appear required. Significantly, NP-ALT induces necroptosis in MCF7 ESRY537S cells, which contain an ER gain of function mutation frequently detected in metastatic patients, which renders them resistant to endocrine therapy. Here we show that NP-ALT causes necroptosis and tumor regression in treatment naïve, palbociclib-resistant, and endocrine-resistant BC cells and xenograft models, demonstrating that p27 is a viable therapeutic target to combat drug resistance. IMPLICATIONS: This study reveals that blocking p27 tyrosine phosphorylation inhibits CDK4 and CDK2 activity and induces ROS-dependent necroptosis, suggesting a novel therapeutic option for endocrine and CDK4 inhibitor-resistant HR+ tumors.
Collapse
Affiliation(s)
- Irina Jilishitz
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jason Luis Quiñones
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Priyank Patel
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Grace Chen
- Concarlo Holdings, LLC, Downstate Biotechnology Incubator, Brooklyn, New York
| | - Jared Pasetsky
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Allison VanInwegen
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Scott Schoninger
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York
| | - Manasi P Jogalekar
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Vladislav Tsiperson
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University at Buffalo, Buffalo, New York
| | - Susan R S Gottesman
- Department of Pathology and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jonathan Somma
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Stacy W Blain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
20
|
Best RB. A Tale of Two Tyrosines. Biophys J 2020; 119:1927-1928. [PMID: 33120016 DOI: 10.1016/j.bpj.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|