1
|
Zhang N, Li L, Mohri M, Siebert S, Lütteke T, Louton H, Bednarikova Z, Gazova Z, Nifantiev N, Jandowsky A, Frölich K, Eckert T, Loers G, Petridis AK, Bhunia A, Mohid SA, Scheidig AJ, Liu G, Zhang R, Lochnit G, Siebert HC. Protein - carbohydrate interaction studies using domestic animals as role models support the search of new glycomimetic molecules. Int J Biol Macromol 2024; 279:134951. [PMID: 39179069 DOI: 10.1016/j.ijbiomac.2024.134951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The structural dynamics of the interactions between defensins or lysozymes and various saccharide chains that are covalently linked to lipids or proteins were analyzed in relation to the sub-molecular architecture of the carbohydrate binding sites of lectins. Using tissue materials from rare and endangered domestic animals as well as from dogs it was possible to compare these results with data obtained from a human glioblastoma tissue. The binding mechanisms were analyzed on a cellular and a sub-molecular size level using biophysical techniques (e.g. NMR, AFM, MS) which are supported by molecular modeling tools. This leads to characteristic structural patterns being helpful to understand glyco-biochemical pathways in which galectins, defensins or lysozymes are involved. Carbohydrate chains have a distinct impact on cell differentiation, cell migration and immunological processes. The absence or the presence of sialic acids and the conformational dynamics in glycans are often correlated with zoonoses such as influenza- and coronavirus-infections. Receptor-sensitive glycomimetics could be a solution. The new findings concerning the function of galectin-3 in the nucleus in relation to differentiation processes can be understood when the binding specificity of neuroleptic molecules as well as the interactions between proteins and nucleic acids are describable on a sub-molecular size level.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Lan Li
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Marzieh Mohri
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Lütteke
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Helen Louton
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Nikolay Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anabell Jandowsky
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Kai Frölich
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany; RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center, Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Department of Neurosurgery, St. Lukes Hospital, Thessaloniki, Greece
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Sk Abdul Mohid
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Axel J Scheidig
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Guiqin Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Günter Lochnit
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität Gießen, Friedrichstrasse 24, 35390 Gießen, Germany
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Siebert HC, Eckert T, Bhunia A, Klatte N, Mohri M, Siebert S, Kozarova A, Hudson JW, Zhang R, Zhang N, Li L, Gousias K, Kanakis D, Yan M, Jiménez-Barbero J, Kožár T, Nifantiev NE, Vollmer C, Brandenburger T, Kindgen-Milles D, Haak T, Petridis AK. Blood pH Analysis in Combination with Molecular Medical Tools in Relation to COVID-19 Symptoms. Biomedicines 2023; 11:biomedicines11051421. [PMID: 37239092 DOI: 10.3390/biomedicines11051421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nele Klatte
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
| | - Marzieh Mohri
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Anna Kozarova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - John W Hudson
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lan Li
- Klinik für Neurochirurgie, Alfried Krupp Krankenhaus, Rüttenscheid, Alfried-Krupp-Straße 21, 45131 Essen, Germany
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westfälische Wilhelms-Universität Münster, 44534 Lünen, Germany
| | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, 2408 Egkomi, Cyprus
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Haak
- Diabetes Klinik Bad Mergentheim, Theodor-Klotzbücher-Str. 12, 97980 Bad Mergentheim, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Percec V, Sahoo D, Adamson J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers (Basel) 2023; 15:polym15081832. [PMID: 37111979 PMCID: PMC10142069 DOI: 10.3390/polym15081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
4
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
5
|
Kaltner H, Mayo KH. Prof. Hans-Joachim Gabius (1955-2021) A Tribute to an Outstanding Glycobiologist, Mentor and Friend. Glycobiology 2021; 32:2-5. [PMID: 35050312 DOI: 10.1093/glycob/cwab099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, Minnesota, 55455 USA*To whom correspondence should be addressed: e-mail:
| |
Collapse
|
6
|
Schlick T, Sundberg EJ, Schroeder SJ, Babu MM. Biophysicists' outstanding response to Covid-19. Biophys J 2021; 120:E1-E2. [PMID: 33689685 PMCID: PMC7931721 DOI: 10.1016/j.bpj.2021.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - M Madan Babu
- St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|