1
|
Guy JE, Cai Y, Baer MD, Whittle E, Chai J, Yu XH, Lindqvist Y, Raugei S, Shanklin J. Regioselectivity mechanism of the Thunbergia alata Δ6-16:0-acyl carrier protein desaturase. PLANT PHYSIOLOGY 2022; 188:1537-1549. [PMID: 34893899 PMCID: PMC8896614 DOI: 10.1093/plphys/kiab577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 05/12/2023]
Abstract
Plant plastidial acyl-acyl carrier protein (ACP) desaturases are a soluble class of diiron-containing enzymes that are distinct from the diiron-containing integral membrane desaturases found in plants and other organisms. The archetype of this class is the stearoyl-ACP desaturase which converts stearoyl-ACP into oleoyl (18:1Δ9cis)-ACP. Several variants expressing distinct regioselectivity have been described including a Δ6-16:0-ACP desaturase from black-eyed Susan vine (Thunbergia alata). We solved a crystal structure of the T. alata desaturase at 2.05 Å resolution. Using molecular dynamics (MD) simulations, we identified a low-energy complex between 16:0-ACP and the desaturase that would position C6 and C7 of the acyl chain adjacent to the diiron active site. The model complex was used to identify mutant variants that could convert the T. alata Δ6 desaturase to Δ9 regioselectivity. Additional modeling between ACP and the mutant variants confirmed the predicted regioselectivity. To validate the in-silico predictions, we synthesized two variants of the T. alata desaturase and analyzed their reaction products using gas chromatography-coupled mass spectrometry. Assay results confirmed that mutants designed to convert T. alata Δ6 to Δ9 selectivity exhibited the predicted changes. In complementary experiments, variants of the castor desaturase designed to convert Δ9 to Δ6 selectivity lost some of their Δ9 desaturation ability and gained the ability to desaturate at the Δ6 position. The computational workflow for revealing the mechanistic understanding of regioselectivity presented herein lays a foundation for designing acyl-ACP desaturases with novel selectivities to increase the diversity of monoenes available for bioproduct applications.
Collapse
Affiliation(s)
- Jodie E Guy
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Yuanheng Cai
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Marcel D Baer
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Edward Whittle
- Brookhaven National Laboratory, Department of Biology, Upton, New York 11973, USA
| | - Jin Chai
- Brookhaven National Laboratory, Department of Biology, Upton, New York 11973, USA
| | - Xiao-Hong Yu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ylva Lindqvist
- Division of Molecular Structural Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - John Shanklin
- Brookhaven National Laboratory, Department of Biology, Upton, New York 11973, USA
- Author for communication:
| |
Collapse
|