Biomechanical properties of endothelial glycocalyx: An imperfect pendulum.
Matrix Biol Plus 2021;
12:100087. [PMID:
34820618 PMCID:
PMC8596327 DOI:
10.1016/j.mbplus.2021.100087]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
This review seeks to fuse the discoveries in cell biology with mechanical engineering to produce a comprehensive biophysical model of endothelial glycocalyx.
The aperiodic oscillatory motions of glycocalyx and cortical actin web underlie our prediction of two functional pacemakers and their participation in the outside-in signaling, the basis for mechanotransduction, and the dampening action of the inside-out signaling.
Advancing an idea that the glycocalyx, plasma membrane, and cortical actin web represent a structure-functional unit and proposing the concept of tensegrity model.
Presentation of our recent data suggesting that erythrocytes are gliding or havering and rotating over the surface of intact glycocalyx, whereas the rotational and hovering components of their passage along the capillaries are lost when glycocalyx of either is degraded.
Endothelial glycocalyx plays a crucial role in hemodynamics in health and disease, yet studying it is met by multiple technical hindrances. We attempted to outline our views on some biomechanical properties of endothelial glycocalyx, which are potentially amenable to mathematical modeling. We start with the null-hypothesis ascribing to glycocalyx the properties of a pendulum and reject this hypothesis on the grounds of multiple obstacles for pendulum behavior, such as rich decoration with flexible negatively charged side-chains, variable length and density, fluid fixation to the plasma membrane. We next analyze the current views on membrane attachments to the cortical actin web, its pulsatile contraction-relaxation cycles which rebound to the changes in tension of the plasma membrane. Based on this, we consider the outside-in signaling, the basis for mechanotransduction, and the dampening action of the inside-out signaling. The aperiodic oscillatory motions of glycocalyx and cortical actin web underlie our prediction of two functional pacemakers. We next advance an idea that the glycocalyx, plasma membrane, and cortical actin web represent a structure-functional unit and propose the concept of tensegrity model. Finally, we present our recent data suggesting that erythrocytes are gliding or hovering and rotating over the surface of intact glycocalyx, whereas the rotational and hovering components of their passage along the capillaries are lost when glycocalyx of either is degraded. These insights into the mechanics of endothelial glycocalyx motions may be of value in crosspollination between biomechanics, physiology, and pathophysiology for deeper appreciation of its rich untapped resources in health and pharmacotherapy in disease.
Collapse