1
|
Sarter M, Stewart JR, Nilsen GJ, Devonport M, Nemkovski K. Data Analysis of Dynamics in Protein Solutions Using Quasi-Elastic Neutron Scattering─Important Insights from Polarized Neutrons. J Am Chem Soc 2024; 146. [PMID: 39360952 PMCID: PMC11488478 DOI: 10.1021/jacs.4c06273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Protein dynamics play a vital role in biology. Quasi elastic neutron scattering (QENS) is an ideal method to access these dynamics. To isolate protein dynamics, it is important to separate the signal of the buffer and the protein. Normally data analysis is performed based on the assumption that the scattering spectrum is incoherent. To observe the full range of protein dynamics, it is necessary to perform the experiments in solution. This solution is usually a fully deuterated buffer, while the protein remains protonated. It is generally assumed that subtracting the buffer contribution removes all coherent signal from the measured spectrum, and the rest can be considered as purely incoherent. Up until recently, there was no way to experimentally verify this assumption. Polarized QENS experiments allow for the coherent and incoherent contributions to be separated. By comparing the results from the polarized QENS experiment and the standard analysis method from unpolarized QENS, we are thus able to check this assumption experimentally. We show that the pure incoherent spectrum obtained from polarization analysis does not match the results for unpolarized QENS. We discuss the implications of this for data analysis and possible solutions to the problem, as well as mitigation techniques for standard QENS.
Collapse
Affiliation(s)
- Mona Sarter
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - J Ross Stewart
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Gøran Jan Nilsen
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Mark Devonport
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Kirill Nemkovski
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| |
Collapse
|
2
|
Kawamukai H, Takishita S, Shimizu K, Kohda D, Ishimori K, Saio T. Conformational Distribution of a Multidomain Protein Measured by Single-Pair Small-Angle X-ray Scattering. J Phys Chem Lett 2024; 15:744-750. [PMID: 38221741 PMCID: PMC10823528 DOI: 10.1021/acs.jpclett.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The difficulty in evaluating the conformational distribution of proteins in solution often hinders mechanistic insights. One possible strategy for visualizing conformational distribution is distance distribution measurement by single-pair small-angle X-ray scattering (SAXS), in which the scattering interference from only a specific pair of atoms in the target molecule is extracted. Despite this promising concept, with few applications in synthetic small molecules and DNA, technical difficulties have prevented its application in protein conformational studies. This study used a synthetic tag to fix the lanthanide ion at desired sites on the protein and used single-pair SAXS with contrast matching to evaluate the conformational distribution of the multidomain protein enzyme MurD. These data highlighted the broad conformational and ligand-driven distribution shifts of MurD in solution. This study proposes an important strategy in solution structural biology that targets dynamic proteins, including multidomain and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Honoka Kawamukai
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shumpei Takishita
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazumi Shimizu
- Faculty
of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan
| | - Daisuke Kohda
- Division
of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichiro Ishimori
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Tomohide Saio
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
- Fujii
Memorial Institute of Medical Sciences, Institute of Advanced Medical
Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
3
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
4
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Gaur V, Bera S. Recent developments on UDP-N-acetylmuramoyl-L-alanine-D-gutamate ligase (Mur D) enzyme for antimicrobial drug development: An emphasis on in-silico approaches. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100137. [PMID: 36568273 PMCID: PMC9780078 DOI: 10.1016/j.crphar.2022.100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The rapid emergence of antibiotic resistance among various bacterial pathogens has been one of the major concerns of health organizations across the world. In this context, for the development of novel inhibitors against antibiotic-resistant bacterial pathogens, UDP-N-Acetylmuramoyl-L-Alanine-D-Glutamate Ligase (MurD) enzyme represents one of the most apposite targets. Body The present review focuses on updated advancements on MurD-targeted inhibitors in recent years along with genetic regulation, structural and functional characteristics of the MurD enzyme from various bacterial pathogens. A concise account of various crystal structures of MurD enzyme, submitted into Protein Data Bank is also discussed. Discussion MurD, an ATP dependent cytoplasmic enzyme is an important target for drug discovery. The genetic organization of MurD enzyme is well elucidated and many crystal structures of MurD enzyme are submitted into Protein Data bank. Various inhibitors against MurD enzyme have been developed so far with an increase in the use of in-silico methods in the recent past. But cell permeability barriers and conformational changes of MurD enzyme during catalytic reaction need to be addressed for effective drug development. So, a combination of in-silico methods along with experimental work is proposed to counter the catalytic machinery of MurD enzyme.
Collapse
Key Words
- Antibiotic resistance
- HTS, High Throughput Screening
- In-silico
- MD, Molecular Dynamics
- MIC, Minimum Inhibitory Concentration
- MurD
- PDB, Protein Data Bank
- PEP, Phosphoenolpyruvate
- PG, Peptidoglycan
- Peptidoglycan
- SAR, Structural Activity Relationship
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-Mpp, UDP-N-acetylmuramylpentapeptide
- UDP-MurNAc, UDP-N-acetylmuramicacid
- UMA, UDP N-acetylmuramoyl-l-alanine
- UNAG, UDP- N-acetylglucosamine
Collapse
|
6
|
Tominaga T, Nakagawa H, Sahara M, Oda T, Inoue R, Sugiyama M. Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer. Life (Basel) 2022; 12:life12050675. [PMID: 35629343 PMCID: PMC9145923 DOI: 10.3390/life12050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding protein functions requires not only static but also dynamic structural information. Incoherent quasi-elastic neutron scattering (QENS), which utilizes the highly incoherent scattering ability of hydrogen, is a powerful technique for revealing the dynamics of proteins in deuterium oxide (D2O) buffer solutions. The background scattering of sample cells suitable for aqueous protein solution samples, conducted with a neutron backscattering spectrometer, was evaluated. It was found that the scattering intensity of an aluminum sample cell coated with boehmite using D2O was lower than that of a sample cell coated with regular water (H2O). The D2O-Boehmite coated cell was used for the QENS measurement of a 0.8 wt.% aqueous solution of an intrinsically disordered protein in an intrinsically disordered region of a helicase-associated endonuclease for a fork-structured type of DNA. The cell was inert against aqueous samples at 283–363 K. In addition, meticulous attention to cells with small individual weight differences and the positional reproducibility of the sample cell relative to the spectrometer neutron beam position enabled the accurate subtraction of the scattering profiles of the D2O buffer and the sample container. Consequently, high-quality information on protein dynamics could be extracted from dilute protein solutions.
Collapse
Affiliation(s)
- Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Ibaraki 319-1106, Japan;
- Correspondence:
| | - Hiroshi Nakagawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan;
- J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
| | - Masae Sahara
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Ibaraki 319-1106, Japan;
| | - Takashi Oda
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan;
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan; (R.I.); (M.S.)
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan; (R.I.); (M.S.)
| |
Collapse
|