1
|
Zhou Z, Fahlstedt M, Li X, Kleiven S. Peaks and Distributions of White Matter Tract-related Strains in Bicycle Helmeted Impacts: Implication for Helmet Ranking and Optimization. Ann Biomed Eng 2024:10.1007/s10439-024-03653-3. [PMID: 39636379 DOI: 10.1007/s10439-024-03653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) in cyclists is a growing public health problem, with helmets being the major protection gear. Finite element head models have been increasingly used to engineer safer helmets often by mitigating brain strain peaks. However, how different helmets alter the spatial distribution of brain strain remains largely unknown. Besides, existing research primarily used maximum principal strain (MPS) as the injury parameter, while white matter fiber tract-related strains, increasingly recognized as effective predictors for TBI, have rarely been used for helmet evaluation. To address these research gaps, we used an anatomically detailed head model with embedded fiber tracts to simulate fifty-one helmeted impacts, encompassing seventeen bicycle helmets under three impact locations. We assessed the helmet performance based on four tract-related strains characterizing the normal and shear strain oriented along and perpendicular to the fiber tract, as well as the prevalently used MPS. Our results showed that both the helmet model and impact location affected the strain peaks. Interestingly, we noted that different helmets did not alter strain distribution, except for one helmet under one specific impact location. Moreover, our analyses revealed that helmet ranking outcome based on strain peaks was affected by the choice of injury metrics (Kendall's Tau coefficient: 0.58-0.93). Significant correlations were noted between tract-related strains and angular motion-based injury metrics. This study provided new insights into computational brain biomechanics and highlighted the helmet ranking outcome was dependent on the choice of injury metrics. Our results also hinted that the performance of helmets could be augmented by mitigating the strain peak and optimizing the strain distribution with accounting the selective vulnerability of brain subregions and more research was needed to develop region-specific injury criteria.
Collapse
Affiliation(s)
- Zhou Zhou
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden.
| | | | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| |
Collapse
|
2
|
Zhou Z, Olsson C, Gasser TC, Li X, Kleiven S. The White Matter Fiber Tract Deforms Most in the Perpendicular Direction During In Vivo Volunteer Impacts. J Neurotrauma 2024; 41:2554-2570. [PMID: 39212616 DOI: 10.1089/neu.2024.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
White matter (WM) tract-related strains are increasingly used to quantify brain mechanical responses, but their dynamics in live human brains during in vivo impact conditions remain largely unknown. Existing research primarily looked into the normal strain along the WM fiber tracts (i.e., tract-oriented normal strain), but it is rarely the case that the fiber tract only endures tract-oriented normal strain during impacts. In this study, we aim to extend the in vivo measurement of WM fiber deformation by quantifying the normal strain perpendicular to the fiber tract (i.e., tract-perpendicular normal strain) and the shear strain along and perpendicular to the fiber tract (i.e., tract-oriented shear strain and tract-perpendicular shear strain, respectively). To achieve this, we combine the three-dimensional strain tensor from the tagged magnetic resonance imaging with the diffusion tensor imaging (DTI) from an open-access dataset, including 44 volunteer impacts under two head loading modes, i.e., neck rotations (N = 30) and neck extensions (N = 14). The strain tensor is rotated to the coordinate system with one axis aligned with DTI-revealed fiber orientation, and then four tract-related strain measures are calculated. The results show that tract-perpendicular normal strain peaks are the largest among the four strain types (p < 0.05, Friedman's test). The distribution of tract-related strains is affected by the head loading mode, of which laterally symmetric patterns with respect to the midsagittal plane are noted under neck extensions, but not under neck rotations. Our study presents a comprehensive in vivo strain quantification toward a multifaceted understanding of WM dynamics. We find that the WM fiber tract deforms most in the perpendicular direction, illuminating new fundamentals of brain mechanics. The reported strain images can be used to evaluate the fidelity of computational head models, especially those intended to predict fiber deformation under noninjurious conditions.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christoffer Olsson
- Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden
| | - T Christian Gasser
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Gazzo D, Kinzer-Ursem TL, Zartman JJ. Proteins clump: Mechanics and transport during neurodegeneration. Biophys J 2024; 123:2360-2362. [PMID: 38901429 PMCID: PMC11365098 DOI: 10.1016/j.bpj.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
This summary of recent contributions in the Biophysical Journal from 2020 to 2023 highlights new mechanistic insights into key biomechanical and biophysical aspects of neurodegeneration. Neurodegeneration encompasses complex diseases characterized by the progressive loss of neuronal function, often linked to protein accumulation and aggregation. Several factors, including mechanical properties and structural composition of brain tissue, formation of proteinaceous condensates within cells, and protein transport between cells, impact the loss of neural function.
Collapse
Affiliation(s)
- David Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | | | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
4
|
Schlotterose L, Beldjilali-Labro M, Hagel M, Yadid M, Flaxer C, Flaxer E, Barnea AR, Hattermann K, Shohami E, Leichtmann-Bardoogo Y, Maoz BM. Inducing Mechanical Stimuli to Tissues Grown on a Magnetic Gel Allows Deconvoluting the Forces Leading to Traumatic Brain Injury. Neurotrauma Rep 2023; 4:560-572. [PMID: 37636339 PMCID: PMC10457614 DOI: 10.1089/neur.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Traumatic brain injury (TBI), which is characterized by damage to the brain resulting from a sudden traumatic event, is a major cause of death and disability worldwide. It has short- and long-term effects, including neuroinflammation, cognitive deficits, and depression. TBI consists of multiple steps that may sometimes have opposing effects or mechanisms, making it challenging to investigate and translate new knowledge into effective therapies. In order to better understand and address the underlying mechanisms of TBI, we have developed an in vitro platform that allows dynamic simulation of TBI conditions by applying external magnetic forces to induce acceleration and deceleration injury, which is often observed in human TBI. Endothelial and neuron-like cells were successfully grown on magnetic gels and applied to the platform. Both cell types showed an instant response to the TBI model, but the endothelial cells were able to recover quickly-in contrast to the neuron-like cells. In conclusion, the presented in vitro model mimics the mechanical processes of acceleration/deceleration injury involved in TBI and will be a valuable resource for further research on brain injury.
Collapse
Affiliation(s)
- Luise Schlotterose
- Institute of Anatomy, Kiel University, Kiel, Germany
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Mario Hagel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Moran Yadid
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Carina Flaxer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Eli Flaxer
- AFEKA–Tel-Aviv Academic College of Engineering, Tel-Aviv, Israel
| | - A. Ronny Barnea
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Esther Shohami
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Rosen G, Kirsch D, Horowitz S, Cherry JD, Nicks R, Kelley H, Uretsky M, Dell'Aquila K, Mathias R, Cormier KA, Kubilus CA, Mez J, Tripodis Y, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. Three dimensional evaluation of cerebrovascular density and branching in chronic traumatic encephalopathy. Acta Neuropathol Commun 2023; 11:123. [PMID: 37491342 PMCID: PMC10369801 DOI: 10.1186/s40478-023-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts (RHI) and characterized by perivascular accumulations of hyperphosphorylated tau protein (p-tau) at the depths of the cortical sulci. Studies of living athletes exposed to RHI, including concussive and nonconcussive impacts, have shown increased blood-brain barrier permeability, reduced cerebral blood flow, and alterations in vasoreactivity. Blood-brain barrier abnormalities have also been reported in individuals neuropathologically diagnosed with CTE. To further investigate the three-dimensional microvascular changes in individuals diagnosed with CTE and controls, we used SHIELD tissue processing and passive delipidation to optically clear and label blocks of postmortem human dorsolateral frontal cortex. We used fluorescent confocal microscopy to quantitate vascular branch density and fraction volume. We compared the findings in 41 male brain donors, age at death 31-89 years, mean age 64 years, including 12 donors with low CTE (McKee stage I-II), 13 with high CTE (McKee stage III-IV) to 16 age- and sex-matched non-CTE controls (7 with RHI exposure and 9 with no RHI exposure). The density of vessel branches in the gray matter sulcus was significantly greater in CTE cases than in controls. The ratios of sulcus versus gyrus vessel branch density and fraction volume were also greater in CTE than in controls and significantly above one for the CTE group. Hyperphosphorylated tau pathology density correlated with gray matter sulcus fraction volume. These findings point towards increased vascular coverage and branching in the dorsolateral frontal cortex (DLF) sulci in CTE, that correlates with p-tau pathology.
Collapse
Affiliation(s)
- Grace Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Sarah Horowitz
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Hunter Kelley
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Kevin Dell'Aquila
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Kerry A Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Caroline A Kubilus
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Thor D Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Ann C McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA.
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA.
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA.
| |
Collapse
|
6
|
McKee AC, Stein TD, Huber BR, Crary JF, Bieniek K, Dickson D, Alvarez VE, Cherry JD, Farrell K, Butler M, Uretsky M, Abdolmohammadi B, Alosco ML, Tripodis Y, Mez J, Daneshvar DH. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol 2023; 145:371-394. [PMID: 36759368 PMCID: PMC10020327 DOI: 10.1007/s00401-023-02540-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Collapse
Affiliation(s)
- Ann C McKee
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
| | - Thor D Stein
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Bieniek
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgane Butler
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Liu M, An Z, Zhang Y, Xiao Y, Xu J, Zhao Z, Huang C, Wang A, Zhou G, Li P, Fan Y. Mechanical Stretch Promotes Neurite Outgrowth of Primary Cultured Dorsal Root Ganglion Neurons via Suppression of Semaphorin 3A-Neuropilin-1/Plexin-A1 Signaling. ACS Chem Neurosci 2022; 13:3416-3426. [PMID: 36413805 DOI: 10.1021/acschemneuro.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Significant attempts have been made to promote neuronal extension and migration in nerve development and regeneration. Although mechanical stretch induces persistent elongation of the axon, the underlying molecular mechanisms are not yet clear. Some axonal guidance cues secreted in the growth cone that affect the axonal growth could attract or repel axons in neurite connection. As semaphorin 3A (Sema3A) is an important repulsion guidance molecule, inhibition of Sema3A has been postulated to promote neuronal development. In this study, the effects of mechanical stretch on dorsal root ganglion neuronal growth and the underlying mechanisms were investigated by assessing the extension direction, neurite length, cell body size, mitochondrial membrane potential, and the expression of Sema3A and its receptors. Our results showed that cell viability significantly increased at tensile strains of 2.5, 5, and 10% for 4 h, with the most prominent effect at 5% tensile strain. Moreover, neurons migrated closer to the stretching direction at 5% tensile strain (0-12 h), while the neurons of the control group moved in a disorderly manner. Furthermore, Sema3A-Neuropilin-1/Plexin-A1 signaling pathway was found to be suppressed after mechanical stretch at 5% tensile strain for 4 h by immunofluorescence staining, immunoprecipitation, and western blot assay. Finally, a Sema3A-SiRNA (SiRNA = small interfering RNA) treatment led to remarkable guidance growth in the stretch-grown neurons. Importantly, there was significant decrease of repulsive cue Sema3A expression and remarkable increase of attractive molecule Netrin-1 expression after mechanical stretching treatment, which jointly promoted neurite outgrowth. This study provides a promising new approach for the development of mechanical stretching therapy or guidance factor-related drugs in injured neuronal regeneration.
Collapse
Affiliation(s)
- Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zitong An
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yu Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yuchen Xiao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhijun Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chongquan Huang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Anqing Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Gang Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
8
|
Recent Advancements in In Vitro Models of Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Estrada JB, Cramer HC, Scimone MT, Buyukozturk S, Franck C. Neural cell injury pathology due to high-rate mechanical loading. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|