1
|
Koczula AM, Cremer N, Moldenhauer M, Sluchanko NN, Maksimov EG, Friedrich T. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149538. [PMID: 39814218 DOI: 10.1016/j.bbabio.2025.149538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In this study, the oligomerization pattern of apo- and holoforms of the Orange Carotenoid Protein (OCP) was examined under different conditions such as photoactivation state, concentration, and carotenoid embedment using analytical ultracentrifugation. Furthermore, studies were conducted on OCP constructs carrying point mutations of amino acid residues affecting OCP oligomerization. Our findings reveal that the concentration-dependent dimerization of dark-adapted OCP holoprotein from Synechocystis sp. PCC 6803 can be effectively prevented by the R27L mutation in the OCP-NTD. By introducing the E258R mutation (also in conjunction with R27L) into the OCP-CTD, monomeric OCP apoprotein can be obtained. Additionally, the holoprotein of the dark-adapted OCP-R27L/E258R variant was monomeric, and, supported by size-exclusion chromatography experiments, the photoactivated form of the OCP-R27L/E258R variant was monomeric as well. This variant, which does not oligomerize in either photocycle state, returns from the photoactivated to the dark-adapted state at a significantly faster rate than the OCP wild-type and the R27L mutant thereof. These observations also highlight the crucial interdependence between OCP dimerization in both photocycle states, the lifetime of the photoactive state of OCP, and the kinetics of the OCP photocycle.
Collapse
Affiliation(s)
- Anna Marta Koczula
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nils Cremer
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Kerfeld CA, Sutter M. Orange carotenoid proteins: structural understanding of evolution and function. Trends Biochem Sci 2024; 49:819-828. [PMID: 38789305 DOI: 10.1016/j.tibs.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Hajizadeh M, Golub M, Moldenhauer M, Matsarskaia O, Martel A, Porcar L, Maksimov E, Friedrich T, Pieper J. Solution Structures of Two Different FRP-OCP Complexes as Revealed via SEC-SANS. Int J Mol Sci 2024; 25:2781. [PMID: 38474026 DOI: 10.3390/ijms25052781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.
Collapse
Affiliation(s)
- Mina Hajizadeh
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Eugene Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| |
Collapse
|
4
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
5
|
Pounot K, Schirò G, Levantino M. Tracking the structural dynamics of proteins with time-resolved X-ray solution scattering. Curr Opin Struct Biol 2023; 82:102661. [PMID: 37536065 DOI: 10.1016/j.sbi.2023.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Relevant events during protein function such as ligand binding/release and interaction with substrates or with light are often accompanied by out-of-equilibrium structural dynamics. Time-resolved experimental techniques have been developed to follow protein structural changes as they happen in real time after a given reaction-triggering event. Time-resolved X-ray solution scattering is a promising approach that bears structural sensitivity with temporal resolution in the femto-to-millisecond time range, depending on the X-ray source characteristics and the triggering method. Here we present the basic principles of the technique together with a description of the most relevant results recently published and a discussion on the computational methods currently developed to achieve a structural interpretation of the time-resolved X-ray solution scattering experimental data.
Collapse
Affiliation(s)
- Kevin Pounot
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
6
|
Tsoraev GV, Bukhanko A, Budylin GS, Shirshin EA, Slonimskiy YB, Sluchanko NN, Kloz M, Cherepanov DA, Shakina YV, Ge B, Moldenhauer M, Friedrich T, Golub M, Pieper J, Maksimov EG, Rubin AB. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 1: Time-Resolved Spectroscopy. J Phys Chem B 2023; 127:1890-1900. [PMID: 36799909 DOI: 10.1021/acs.jpcb.2c07189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Most cyanobacteria utilize a water-soluble Orange Carotenoid Protein (OCP) to protect their light-harvesting complexes from photodamage. The Fluorescence Recovery Protein (FRP) is used to restore photosynthetic activity by inactivating OCP via dynamic OCP-FRP interactions, a multistage process that remains underexplored. In this work, applying time-resolved spectroscopy, we demonstrate that the interaction of FRP with the photoactivated OCP begins early in the photocycle. Interacting with the compact OCP state, FRP completely prevents the possibility of OCP domain separation and formation of the signaling state capable of interacting with the antenna. The structural element that prevents FRP binding and formation of the complex is the short α-helix at the beginning of the N-terminal domain of OCP, which masks the primary site in the C-terminal domain of OCP. We determined the rate of opening of this site and show that it remains exposed long after the relaxation of the red OCP states. Observations of the OCP transitions on the ms time scale revealed that the relaxation of the orange photocycle intermediates is accompanied by an increase in the interaction of the carotenoid keto group with the hydrogen bond donor tyrosine-201. Our data refine the current model of photoinduced OCP transitions and the interaction of its intermediates with FRP.
Collapse
Affiliation(s)
- Georgy V Tsoraev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Antonina Bukhanko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gleb S Budylin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.,Laboratory of Clinical Biophotonics, Scientific and Technological Biomedical Park, Sechenov University, 119435 Moscow, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Dolní Břežany, 252 41 Czech Republic
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | | | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
7
|
Golub M, Moldenhauer M, Matsarskaia O, Martel A, Grudinin S, Soloviov D, Kuklin A, Maksimov EG, Friedrich T, Pieper J. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 2: Small-Angle Neutron Scattering with Partial Deuteration. J Phys Chem B 2023; 127:1901-1913. [PMID: 36815674 DOI: 10.1021/acs.jpcb.2c07182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We used small-angle neutron scattering partially coupled with size-exclusion chromatography to unravel the solution structures of two variants of the Orange Carotenoid Protein (OCP) lacking the N-terminal extension (OCP-ΔNTE) and its complex formation with the Fluorescence Recovery Protein (FRP). The dark-adapted, orange form OCP-ΔNTEO is fully photoswitchable and preferentially binds the pigment echinenone. Its complex with FRP consists of a monomeric OCP component, which closely resembles the compact structure expected for the OCP ground state, OCPO. In contrast, the pink form OCP-ΔNTEP, preferentially binding the pigment canthaxanthin, is mostly nonswitchable. The pink OCP form appears to occur as a dimer and is characterized by a separation of the N- and C-terminal domains, with the canthaxanthin embedded only into the N-terminal domain. Therefore, OCP-ΔNTEP can be viewed as a prototypical model system for the active, spectrally red-shifted state of OCP, OCPR. The dimeric structure of OCP-ΔNTEP is retained in its complex with FRP. Small-angle neutron scattering using partially deuterated OCP-FRP complexes reveals that FRP undergoes significant structural changes upon complex formation with OCP. The observed structures are assigned to individual intermediates of the OCP photocycle in the presence of FRP.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, 38042 Cedex 9 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, 38042 Cedex 9 Grenoble, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Dmytro Soloviov
- Faculty of Physics, Adam Mickiewicz University, ul. Wieniawskiego 1, 61-712 Poznan, Poland.,Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine, Kirova 36a, 07270 Chornobyl, Ukraine
| | - Alexander Kuklin
- Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, Russia.,Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Eugene G Maksimov
- Department of Biophysics, M. V. Lomonosov Moscow State University, Vorob'jovy Gory 1-12, 119899 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Niziński S, Schlichting I, Colletier JP, Kirilovsky D, Burdzinski G, Sliwa M. Is orange carotenoid protein photoactivation a single-photon process? BIOPHYSICAL REPORTS 2022; 2:100072. [PMID: 36425326 PMCID: PMC9680785 DOI: 10.1016/j.bpr.2022.100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
In all published photoactivation mechanisms of orange carotenoid protein (OCP), absorption of a single photon by the orange dark state starts a cascade of red-shifted OCP ground-state intermediates that subsequently decay within hundreds of milliseconds, resulting in the formation of the final red form OCPR, which is the biologically active form that plays a key role in cyanobacteria photoprotection. A major challenge in deducing the photoactivation mechanism is to create a uniform description explaining both single-pulse excitation experiments, involving single-photon absorption, and continuous light irradiation experiments, where the red-shifted OCP intermediate species may undergo re-excitation. We thus investigated photoactivation of Synechocystis OCP using stationary irradiation light with a biologically relevant photon flux density coupled with nanosecond laser pulse excitation. The kinetics of photoactivation upon continuous and nanosecond pulse irradiation light show that the OCPR formation quantum yield increases with photon flux density; thus, a simple single-photon model cannot describe the data recorded for OCP in vitro. The results strongly suggest a consecutive absorption of two photons involving a red intermediate with ≈100 millisecond lifetime. This intermediate is required in the photoactivation mechanism and formation of the red active form OCPR.
Collapse
Affiliation(s)
- Stanisław Niziński
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznan, Poland
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Lille, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | | | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Gotard Burdzinski
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznan, Poland
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Lille, France
| |
Collapse
|