Oliveira IS, Silva SG, Gomes AC, Real Oliveira MECD, Vale MLCD, Marques EF. Cationic Serine-Based Gemini Surfactant:Monoolein Aggregates as Viable and Efficacious Agents for DNA Complexation and Compaction: A Cytotoxicity and Physicochemical Assessment.
J Funct Biomater 2024;
15:224. [PMID:
39194661 DOI:
10.3390/jfb15080224]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35-90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.
Collapse