1
|
Liu Z, Wang F, Yuan H, Tian F, Yang C, Hu F, Liu Y, Tang M, Ping M, Kang C, Luo T, Yang G, Hu M, Gao Z, Li P. An LQT2-related mutation in the voltage-sensing domain is involved in switching the gating polarity of hERG. BMC Biol 2024; 22:29. [PMID: 38317233 PMCID: PMC11380439 DOI: 10.1186/s12915-024-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.
Collapse
Affiliation(s)
- Zhipei Liu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Hui Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chuanyan Yang
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fei Hu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yiyao Liu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Meiqin Tang
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meixuan Ping
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunlan Kang
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Luo
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Guimei Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
| | - Mei Hu
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China
- Pharmacology Laboratory, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Zhongshan, 528401, China
| | - Zhaobing Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|