1
|
Smith KC, Oglietti R, Moran SJ, Macosko JC, Lyles DS, Holzwarth G. Directional change during active diffusion of viral ribonucleoprotein particles through cytoplasm. Biophys J 2024; 123:2869-2876. [PMID: 38664967 PMCID: PMC11393665 DOI: 10.1016/j.bpj.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
A mesh of cytoskeletal fibers, consisting of microtubules, intermediate filaments, and fibrous actin, prevents the Brownian diffusion of particles with a diameter larger than 0.10 μm, such as vesicular stomatitis virus ribonucleoprotein (RNP) particles, in mammalian cells. Nevertheless, RNP particles do move in random directions but at a lower rate than Brownian diffusion, which is thermally driven. This nonthermal biological transport process is called "active diffusion" because it is driven by ATP. The ATP powers motor proteins such as myosin II. The motor proteins bend and cross-link actin fibers, causing the mesh to jiggle. Until recently, little was known about how RNP particles get through the mesh. It has been customary to analyze the tracks of particles like RNPs by computing the slope of the ensemble-averaged mean-squared displacement of the particles as a signature of mechanism. Although widely used, this approach "loses information" about the timing of the switches between physical mechanisms. It has been recently shown that machine learning composed of variational Bayesian analysis, Gaussian mixture models, and hidden Markov models can use "all the information" in a single track to reveal that that the positions of RNP particles are spatially clustered. Machine learning assigns a number, called a state, to each cluster. RNP particles remain in one state for 0.2-1.0 s before switching (hopping) to a different state. This earlier work is here extended to analyze the movements of a particle within a state and to determine particle directionality within and between states.
Collapse
Affiliation(s)
- Kathleen C Smith
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| | - Ryan Oglietti
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina
| | - Steven J Moran
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jed C Macosko
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Douglas S Lyles
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
2
|
Vos BE, Muenker TM, Betz T. Characterizing intracellular mechanics via optical tweezers-based microrheology. Curr Opin Cell Biol 2024; 88:102374. [PMID: 38824902 DOI: 10.1016/j.ceb.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Abstract
Intracellular organization is a highly regulated homeostatic state maintained to ensure eukaryotic cells' correct and efficient functioning. Thanks to decades of research, vast knowledge of the proteins involved in intracellular transport and organization has been acquired. However, how these influence and potentially regulate the intracellular mechanical properties of the cell is largely unknown. There is a deep knowledge gap between the understanding of cortical mechanics, which is accessible by a series of experimental tools, and the intracellular situation that has been largely neglected due to the difficulty of performing intracellular mechanics measurements. Recently, tools required for such quantitative and localized analysis of intracellular mechanics have been introduced. Here, we review how these approaches and the resulting viscoelastic models lead the way to a full mechanical description of the cytoplasm, which is instrumental for a quantitative characterization of the intracellular life of cells.
Collapse
Affiliation(s)
- Bart E Vos
- Third Institute of Physics, Georg August University, Göttingen, Germany
| | - Till M Muenker
- Third Institute of Physics, Georg August University, Göttingen, Germany
| | - Timo Betz
- Third Institute of Physics, Georg August University, Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg August University, Göttingen, Germany.
| |
Collapse
|
3
|
Handler C, Testi C, Scarcelli G. Advantages of integrating Brillouin microscopy in multimodal mechanical mapping of cells and tissues. Curr Opin Cell Biol 2024; 88:102341. [PMID: 38471195 DOI: 10.1016/j.ceb.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Recent research has highlighted the growing significance of the mechanical properties of cells and tissues in the proper execution of physiological functions within an organism; alterations to these properties can potentially result in various diseases. These mechanical properties can be assessed using various techniques that vary in spatial and temporal resolutions as well as applications. Due to the wide range of mechanical behaviors exhibited by cells and tissues, a singular mapping technique may be insufficient in capturing their complexity and nuance. Consequently, by utilizing a combination of methods-multimodal mechanical mapping-researchers can achieve a more comprehensive characterization of mechanical properties, encompassing factors such as stiffness, modulus, viscoelasticity, and forces. Furthermore, different mapping techniques can provide complementary information and enable the exploration of spatial and temporal variations to enhance our understanding of cellular dynamics and tissue mechanics. By capitalizing on the unique strengths of each method while mitigating their respective limitations, a more precise and holistic understanding of cellular and tissue mechanics can be obtained. Here, we spotlight Brillouin microscopy (BM) as a noncontact, noninvasive, and label-free mechanical mapping modality to be coutilized alongside established mechanical probing methods. This review summarizes some of the most widely adopted individual mechanical mapping techniques and highlights several recent multimodal approaches demonstrating their utility. We envision that future studies aim to adopt multimodal techniques to drive advancements in the broader realm of mechanobiology.
Collapse
Affiliation(s)
- Chenchen Handler
- Department of Mechanical Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Claudia Testi
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA; Center for Life Nano- and Neuro- Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Stilgoe A, Favre-Bulle IA, Watson ML, Gomez-Godinez V, Berns MW, Preece D, Rubinsztein-Dunlop H. Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond. ACS PHOTONICS 2024; 11:917-940. [PMID: 38523746 PMCID: PMC10958612 DOI: 10.1021/acsphotonics.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Mechanobiology helps us to decipher cell and tissue functions by looking at changes in their mechanical properties that contribute to development, cell differentiation, physiology, and disease. Mechanobiology sits at the interface of biology, physics and engineering. One of the key technologies that enables characterization of properties of cells and tissue is microscopy. Combining microscopy with other quantitative measurement techniques such as optical tweezers and scissors, gives a very powerful tool for unraveling the intricacies of mechanobiology enabling measurement of forces, torques and displacements at play. We review the field of some light based studies of mechanobiology and optical detection of signal transduction ranging from optical micromanipulation-optical tweezers and scissors, advanced fluorescence techniques and optogenentics. In the current perspective paper, we concentrate our efforts on elucidating interesting measurements of forces, torques, positions, viscoelastic properties, and optogenetics inside and outside a cell attained when using structured light in combination with optical tweezers and scissors. We give perspective on the field concentrating on the use of structured light in imaging in combination with tweezers and scissors pointing out how novel developments in quantum imaging in combination with tweezers and scissors can bring to this fast growing field.
Collapse
Affiliation(s)
- Alexander
B. Stilgoe
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| | - Itia A. Favre-Bulle
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, 4074, Australia
| | - Mark L. Watson
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
| | - Veronica Gomez-Godinez
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
| | - Michael W. Berns
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Daryl Preece
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Halina Rubinsztein-Dunlop
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| |
Collapse
|
5
|
Umeda K, Nishizawa K, Nagao W, Inokuchi S, Sugino Y, Ebata H, Mizuno D. Activity-dependent glassy cell mechanics II: Nonthermal fluctuations under metabolic activity. Biophys J 2023; 122:4395-4413. [PMID: 37865819 PMCID: PMC10698330 DOI: 10.1016/j.bpj.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/28/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
The glassy cytoplasm, crowded with bio-macromolecules, is fluidized in living cells by mechanical energy derived from metabolism. Characterizing the living cytoplasm as a nonequilibrium system is crucial in elucidating the intricate mechanism that relates cell mechanics to metabolic activities. In this study, we conducted active and passive microrheology in eukaryotic cells, and quantified nonthermal fluctuations by examining the violation of the fluctuation-dissipation theorem. The power spectral density of active force generation was estimated following the Langevin theory extended to nonequilibrium systems. However, experiments performed while regulating cellular metabolic activity showed that the nonthermal displacement fluctuation, rather than the active nonthermal force, is linked to metabolism. We discuss that mechano-enzymes in living cells do not act as microscopic objects. Instead, they generate meso-scale collective fluctuations with displacements controlled by enzymatic activity. The activity induces structural relaxations in glassy cytoplasm. Even though the autocorrelation of nonthermal fluctuations is lost at long timescales due to the structural relaxations, the nonthermal displacement fluctuation remains regulated by metabolic reactions. Our results therefore demonstrate that nonthermal fluctuations serve as a valuable indicator of a cell's metabolic activities, regardless of the presence or absence of structural relaxations.
Collapse
Affiliation(s)
| | | | - Wataru Nagao
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Shono Inokuchi
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Yujiro Sugino
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ebata
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
7
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|